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Abstract—This paper explores stochastic multi-level composi-
tional optimization, where the objective function is a composition
of multiple smooth functions. Traditional methods for solving this
problem suffer from either sub-optimal sample complexities or
require huge batch sizes. To address these limitations, we introduce
the Stochastic Multi-level Variance Reduction (SMVR) method.
In the expectation case, our SMVR method attains the optimal
sample complexity of O(1/ε3) to find an ε-stationary point for
non-convex objectives. When the function satisfies convexity or the
Polyak-Łojasiewicz (PL) condition, we propose a stage-wise SMVR
variant. This variant improves the sample complexity to O(1/ε2)
for convex functions and O(1/(με)) for functions meeting the
μ-PL condition or μ-strong convexity. These complexities match
the lower bounds not only in terms of ε but also in terms of μ (for
PL or strongly convex functions), without relying on large batch
sizes in each iteration. Furthermore, in the finite-sum case, we
develop the SMVR-FS algorithm, which can achieve a complexity
of O(

√
n/ε2) for non-convex objectives, O(

√
n/ε log(1/ε)) for

convex functions andO(
√
n/μ log(1/ε)) for objectives satisfying

the μ-PL condition, where n denotes the number of functions in
each level. To make use of adaptive learning rates, we propose the
Adaptive SMVR method, which maintains the same complexities
while demonstrating faster convergence in practice.

Index Terms—Stochastic compositional optimization,
multi-level optimization, nested variance reduction, finite-sum
optimization.

I. INTRODUCTION

THIS paper investigates the stochastic multi-level composi-
tional optimization problem, formulated as:

min
w∈Rd

F (w) = fK ◦ · · · ◦ f2 ◦ f1(w), (1)
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where fi : Rdi−1 �→ Rdi , for i = 1, . . . ,K (with dK = 1 and
d0 = d). In the expectation case, we assume that only noisy
evaluations of each layer function fi(·; ξi) and its gradient
∇fi(·; ξi) can be accessed, where ξi denotes a sample drawn
from the oracle such that:

Eξi [fi(·; ξi)] = fi(·), Eξi [∇fi(·; ξi)] = ∇fi(·).
In machine learning, w often represents the parameters of a
predictive model, and F denotes the loss of that model, with ξi
representing a training sample. A special case to be considered
separately is when each ξi has finite support {1, . . . , ni} and is
uniformly distributed. In such finite-sum cases, the problem is
expressed as:

min
w∈Rd

F (w) =
1

nK

nK∑
j=1

fK,j

⎛⎝· · · 1

n1

n1∑
j=1

f1,j (w) · · ·
⎞⎠ . (2)

Problems (1) and (2) have significant applications in many
tasks, such as reinforcement learning [1], robust learning [2],
multi-step model-agnostic meta-learning [3], risk-averse port-
folio optimization [4], [5] and risk management [6], [7].

Our goal is to solve the problem with the optimal sample
complexity, which is a commonly used metric in stochastic
optimization. This metric measures the number of samples
needed to reach an ε-stationary point for non-convex functions,
i.e., ‖∇F (w)‖ ≤ ε, or an ε-optimal point for convex or PL
functions, i.e., F (w)− infw F (w) ≤ ε. Problems (1) and (2)
reduce to the standard one-level stochastic optimization problem
when K = 1, and are known as the two-level compositional
optimization for K = 2.

In the expectation case for one-level and two-level non-convex
problems, single-loop algorithms such as STORM [8] and RE-
COVER [9] have been shown to achieve the optimal complexity
of O(1/ε3) for attaining an ε-stationary solution without using
large batch sizes. However, for multi-level problems, the er-
rors of gradient and function value estimators accumulate with
the level becoming deeper, making the problem much harder.
Existing multi-level methods either suffer from sub-optimal
complexities [10], [11], [12] or require huge and increasing
batch sizes [13]. When the objective function is convex or
strongly convex, [14] has been established a sample complexity
of O(1/ε2) or O(1/(μ2ε)). However, their analysis requires
that each layer function fi is monotone and convex, and their
complexity for μ-strongly convex function is non-optimal with
respect to μ [15].
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In the finite-sum case, only one paper [13] addresses the
multi-level finite-sum problem, achieving an optimal complexity
of O(n+

√
n/ε2) for non-convex functions. Yet, this approach

also requires large batch sizes of O(
√
n) per step and full batch

sizes ofO(n) at each checkpoint. Moreover, the complexities for
convex/PL/strongly convex objectives have not been explored in
this context.

Hence, a fundamental question to be addressed is: Is it pos-
sible to solve stochastic multi-level problems with optimal com-
plexities for non-convex, convex, and strongly convex functions
without large batch sizes? We give an affirmative answer to
this question by introducing an innovative algorithm named
Stochastic Multi-level Variance Reduction (SMVR). By using
the variance reduction techniques to estimate Jacobians and
function values at each level, SMVR achieves the optimal sample
complexity of O(1/ε3) for non-convex functions in the expecta-
tion case, aligning with the established lower bound [16]. Central
to the algorithmic design and analysis are: (i) the variance re-
duction is applied concurrently to Jacobians and function values,
which is different from most existing works [10], [11], [12]; (ii)
the Jacobian estimators are updated with a projection to ensure
that errors of gradient estimators can be bounded regardless of
the depth of the problem. Then, by only estimating the overall
gradient in each step and using the normalization technique,
we further show that we are able to remove the projection
operation and do not require problem-dependent parameters
to set hyper-parameters, which are more practical to use in
real-world scenarios. When handling convex functions or those
satisfy the μ-PL condition (weaker than strong convexity), we
propose stage-wise SMVR methods and improve the complexity
to O(1/ε2) and O(1/(με)) respectively, matching the corre-
sponding lower bounds [15]. A crucial aspect of our analysis
is demonstrating that the errors of gradient and function value
estimators decrease in a stage-wise manner.

For the finite-sum structure, we adopt the framework of SAG
algorithm [17] to avoid computing on the full batches and
incorporate variance reduction technique with an additional term
recording the gradient history. By employing such a design, we
obtain an optimal complexity of O(

√
n/ε2) for non-convex ob-

jectives. Following the similar stage-wise approach, we can also
achieve a complexity ofO(

√
n/ε log(1/ε)) for convex functions

and O(
√
n/μ log(1/ε)) for μ-PL/strongly convex objectives.

Finally, to take advantage of adaptive learning rates, we design
an adaptive version of SMVR methods and prove the same rates.
Adaptive SMVR performs better in practice and avoids tuning
the learning rate manually. Compared with existing multi-level
methods, this paper enjoys the following advantages:

1) We achieve the optimal complexity of O(1/ε3) for non-
convex functions, which is better than existing multi-level
methods [10], [11], [12]. Although [13] attains the same
rate, their approach relies on a large and increasing batch
size of O(1/ε), which is impractical to use.

2) For convex and strongly convex functions, we obtain an
optimal complexity of O(1/ε2) and O(1/(με)), respec-
tively. This is an improvement over [14], as our method
does not require each layer function fi to be monotone and
convex, and exhibits better dependence onμ forμ-strongly
convex functions.

3) We introduce the Adaptive SMVR method to make use of
adaptive learning rates, which enjoys the same complexity
but shows faster convergence in practice.

A preliminary version of this paper was presented at the 39th
International Conference on Machine Learning in 2022 [18].
In this paper, we have significantly expanded the conference
version by adding the following extensions.

1) We develop a simpler version of the original SMVR
algorithm, named SMVR-NP, which preserves optimal
convergence but does not need the projection operation
anymore. This is achieved by estimating the overall gra-
dient instead of evaluating the gradient in each level sepa-
rately. By further employing the normalization technique,
we also avoid requiring problem-dependent parameters to
set hyper-parameters, making the newly proposed method
much more practical.

2) We also investigate the stochastic multi-level optimiza-
tion for the finite-sum structure and propose the SMVR-
FS algorithm to obtain the optimal sample complex-
ity of O(

√
n/ε2) for non-convex functions. Compared

with [13], our method supports a constant batch size,
which is much easier to implement. In contrast, [13]
requires to use a large batch of O(

√
n) in each step and

of O(n) in the checkpoint step.
3) We further improve the complexity to O(

√
n/ε log(1/ε))

for convex functions and to O(
√
n/μ log(1/ε)) for μ-

PL/strongly convex objectives in the finite-sum case.
These results are new in the multi-level finite-sum lit-
erature, and the linear convergence rate O(log(1/ε)) is
optimal under the PL condition, matching the current
result in the single-level finite-sum problem [19].

4) We compare the newly proposed methods, i.e., SMVR-NP
and SMVR-FS, with other multi-level algorithms in the
experiments of three different tasks, validating the effec-
tiveness of our proposed methods.

A comparison between our results and existing multi-level
methods is shown in Tables I and II.

II. RELATED WORK

This section provides an overview of related work on stochas-
tic two-level and multi-level compositional optimization, as well
as finite-sum compositional optimization.

A. Two-Level Compositional Optimization

Ref. [20] first introduces the stochastic compositional gra-
dient descent (SCGD) method to minimize a composition of
two-level expected-value functions. This method uses two step
size sequences in different time scales to update the decision
variable and inner function separately. When the inner function
is smooth, this approach yields a complexity of O(1/ε7) for
non-convex objectives, O(1/ε3.5) for convex functions, and
O(1/(μ14/4ε5/4)) for μ-strongly convex functions. In a subse-
quent work [21], the accelerated stochastic compositional prox-
imal gradient (ASC-PG) is proposed to improve the complexity
to O(1/ε4.5), O(1/ε2) and O(1/ε) for non-convex, convex and
strongly convex functions, respectively.
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TABLE I
SUMMARY OF RESULTS FOR ATTAINING AN ε-STATIONARY OR ε-OPTIMAL POINT IN THE EXPECTATION CASE

TABLE II
SUMMARY OF RESULTS FOR FINDING AN ε-STATIONARY OR ε-OPTIMAL POINT IN THE FINITE-SUM CASE

Instead of using two-timescale step sizes, a single-timescale
method called Nested Averaged Stochastic Approximation
(NASA) has been developed by [22] which achieves a complex-
ity ofO(1/ε4) for non-convex objectives. With the emergence of
variance reduction techniques in one-level stochastic optimiza-
tion such as SARAH [23], SPIDER [24], SpiderBoost [25] and
STORM [8], variance reduced algorithms are also developed for
two-level compositional problems with improved rates under a
slightly stronger smoothness assumption [26], [27], [28], [29].
Notably, [27] and [28] achieve the optimal O(1/ε3) sample
complexity, leveraging SARAH and SPIDER with large batch
sizes, respectively. Later, [30] develops an algorithm named
STORM-Compositional, attaining the same complexity using
mini-batches. To avoid using batches, [9] proposes a STORM-
based method and obtains the same optimal rate. However, these
two-level approaches are not directly extendable to multi-level
optimization problems.

B. Multi-Level Compositional Optimization

The pioneering work by [10] marks the beginning of re-
search into stochastic multi-level optimization. They introduced
an accelerated T -level stochastic compositional gradient de-
scent (A-TSCGD) algorithm, which, through an extrapolation-
interpolation technique, achieved a sample complexity of
O(1/ε(7+K)/2) for K-level problems. This complexity is fur-
ther improved to O(1/ε(3+K)/4) for strongly convex functions.
Building on this, [11] proposes the Nested Linearized Aver-
aging Stochastic Gradient method (NLASG), extending the
NASA algorithm to a more general K ≥ 1 setting, achieving
a sample complexity of O(1/ε4). Concurrently, [12] develops
the Stochastically Corrected Stochastic Compositional gradient
method (SCSC), which adopts a STORM-like technique for
function value estimation at each level, also achieving a sample
complexity of O(1/ε4).

Later, [13] introduces the Nested-SPIDER method, which
employs nested variance reduction for gradient approximation,
improving the sample complexity to O(1/ε3). However, this
method necessitates a large and increasing batch size at the
order of O(1/ε) and even O(1/ε2) in the first iteration of
each stage. The method also does not specify complexities
for convex and strongly convex functions. Later, [14] proves
that the sample complexity can be improved to O(1/ε2) when
every layer function fi is monotone and convex, using a general
Stochastic Sequential Dual (SSD) method. The complexity is
further reduced to O(1/(μ2ε)) for μ-strongly convex functions.
However, their method requires strong assumptions, i.e., layer-
wise convexity and monotonicity. In contrast, our method only
requires the overall objective function to be convex or strongly
convex to achieve the same complexity for convex functions and
an even better complexity for strongly convex functions.

More recently, multi-level optimization is also widely inves-
tigated in the distributed environment. [31] further introduced
the decentralized stochastic multi-level optimization algorithm,
which achieves the level-independent convergence rate under the
decentralized setting. At the same time, [32] studied distributed
multi-level optimization with the smooth and strongly convex
objective, attaining an optimal communication complexity while
maintaining an almost optimal sample complexity.

C. Finite-Sum Compositional Optimization

For the two-level finite-sum optimization problem in the form
of 1

n2

∑n2

j=1 f2,j(
1
n1

∑n1

j=1 f1,j(w)), [33] first combines the
SCGD [20] and SVRG [34] techniques and achieve a complexity
of O((n1 + n2) log(1/ε)) for strongly convex functions. To
deal with the general non-convex objectives, [26] proposes an
algorithm named VRSC-PG, which can obtain a complexity
of O((n1 + n2)

2/3/ε2) by employing the variance reduction
technique to estimate the inner function values. This rate is also
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achieved by [28] using a composite randomized incremental
gradient method.

When it comes to the multi-level finite-sum optimization,
[13] obtains a sample complexity of O(n+

√
nmax/ε

2), where
nmax = max{n1, . . . , nK} andn =

∑K
i=1 ni. Since this method

is based on SPIDER, it still has to use large batch sizes of
O(

√
nmax) and require computing over the full batches at cer-

tain checkpoint steps. Furthermore, the sample complexity for
convex/PL/strongly convex functions remains unexplored in
this setting, highlighting an opportunity for future research to
investigate these specific function types within the multi-level
finite-sum framework.

III. MULTI-LEVEL VARIANCE REDUCTION FOR THE

EXPECTATION CASE

We first discuss the main challenge in solving multi-level
compositional optimization problems. Then, we develop an op-
timal method for non-convex objectives in the expectation case.
Finally, we explore additional conditions to further improve the
sample complexity.

A. Notations and Assumptions

Let ξ denote some random variable and ‖ · ‖ denote the eu-
clidean norm of a vector. We use ΠLf

to represent the projection
onto the ball with radius Lf , i.e.,

ΠLf
(x) = argmin

‖w‖�Lf

‖w − x‖2.

We further give the definition of sample complexity below.
Definition 1: The sample complexity refers to the number

of samples needed to find a point satisfying E[‖∇F (w)‖] ≤ ε
(ε-stationary) or E[F (w)− infw F (w)] ≤ ε (ε-optimal).

Moreover, we make the following assumptions in this section,
which are commonly adopted in the studies of stochastic com-
positional optimization [13], [20], [21], [27], [28], [35], [36].

Assumption 1: (Bounded Variance) For 1 ≤ i ≤ K, the fol-
lowing conditions hold:

Eξit

[
fi(x; ξ

i
t)
]
= fi(x),

Eξit

[∇fi(x; ξ
i
t)
]
= ∇fi(x),

Eξit

[∥∥fi(x; ξit)− fi(x)
∥∥2] ≤ σ2

f ,

Eξit

[∥∥∇fi(x; ξ
i
t)−∇fi(x)

∥∥2] ≤ σ2
J ,

where {ξit}Ki=1 are mutually independent.
Assumption 2: (Mean-Squared Smoothness)

Eξit

[∥∥fi(x; ξit)− fi(y; ξ
i
t)
∥∥2] ≤ L2

f ‖x− y‖2 ,

Eξit

[∥∥∇fi(x; ξ
i
t)−∇fi(y; ξ

i
t)
∥∥2] ≤ L2

J ‖x− y‖2 .
Assumption 3: F∗ = infw F (w) ≥ −∞ and F (w1)− F∗ ≤

ΔF for the initial solution w1.
Remark: Note that Assumptions 1 and 2 can imply that the

overall objective function F is LF -smooth, where the smooth
constant is defined as LF := L2K−1

f LJ

∑K
i=1 L

−i
f .

B. The Challenge in Multi-Level Optimization

Compared with single-level problems, the main dilemma in
multi-level optimization lies in the difficulty of obtaining an
unbiased gradient of the function F . Consider a two-level com-
positional problem, where the objective function is expressed as
F (w) = f ◦ g(w). The gradient of this function is given by:

∇F (w) = ∇g(w) · ∇f(g(w)).

Although we have access to unbiased estimations of each
layer function and its gradient, i.e., Eξ1 [g(x; ξ1)] = g(x),
Eξ2 [f(x; ξ2)] = f(x) and Eξ2 [∇f(x; ξ2)] = ∇f(x), it is still
challenging to obtain an unbiased estimation of the gradient
∇f(g(w)). This is because the expectation over ξ1 cannot be
moved inside of ∇f such that:

Eξ1,ξ2 [∇f(g(w; ξ1); ξ2)] 
= ∇f(g(w)).

Similarly, it is also difficult to obtain an unbiased estimation of
the function value:

Eξ1,ξ2 [f(g(w; ξ1); ξ2)] 
= f(g(w)).

These challenges motivate us to adopt the variance reduced
estimator to have a better evaluation of function values and
Jacobians at each level, ensuring that the estimation errors can
be reduced over time.

However, variance reduced estimators used in two-level opti-
mization problems [9] can not be applied to multi-level directly,
because the error might blow up as the depth increases if the
estimators of Jacobians are not bounded. To handle this issue,
[13] proposes to use an extremely small step size and periodi-
cally re-evaluate the function values and Jacobians at all levels
with a large batch size after several iterations. However, this
approach inevitably necessitates the use of large batches (as large
as O(1/ε2)) at the beginning of each stage, and since they use
SPIDER [24] as their estimator, their method requires a batch
size of O(1/ε) at other iterations. To avoid using large batches,
our method uses STORM [8] estimator and projects gradients
onto a ball to ensure the Jacobians can be well bounded so that
the error of the gradient estimator does not blow up.

C. Stochastic Multi-Level Variance Reduction Method

Now, we introduce the proposed Stochastic Multi-level Vari-
ance Reduction (SMVR) method for solving problem (1). As
mentioned before, the main difficulty is that we can not obtain
an unbiased estimation of the gradients and inner function values
in the multi-level setting. We note that, in the one-level problems,
the STORM method employs a momentum-based variance re-
duction technique for gradient estimation, represented as:

dt = (1− βt)dt−1 + βt∇f (xt; ξt)

+ (1− βt) (∇f (xt; ξt)−∇f (xt−1; ξt)) .

This method effectively reduces the variance of the estimated
values and achieves the optimal rate. Inspired by STORM, we
apply similar variance reduction estimators at each level to
approximate the gradient more accurately.

The proposed method is described in Algorithm 1. At each
time step t, we employ two sequences, ui

t and vi
t, to estimate
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Algorithm 1: SMVR Method.

1: Input: time step T , initial points (w1,u1,v1),
parameter c, and learning rate sequence {ηt}

2: for time step t = 1 to T do
3: Set u0

t = wt, βt = cη2t−1

4: for level i = 1 to K do
5: Sample ξit
6: Compute the function estimator ui

t according to (3)
7: Compute the Jacobian estimator vi

t according to (4)
8: end for
9: Update gradient estimation: vt =

∏K
i=1 v

i
t

10: Update the decision variable: wt+1 = wt − ηtvt

11: end for
12: Choose τ uniformly at random from {1, . . . , T}
13: Return (wτ ,uτ ,vτ )

the function value and the gradient at level i, respectively. For
function value estimation, we use a nested STORM estimator,
i.e.,

ui
t = (1− βt)u

i
t−1 + βtfi(u

i−1
t ; ξit)

+ (1− βt)
(
fi(u

i−1
t ; ξit)− fi(u

i−1
t−1; ξ

i
t)
)
. (3)

This formulation can be interpreted as that ui
t is a STORM

estimator of fi(ui−1
t ). For estimating the Jacobians, we apply a

nested STORM estimator, followed by a projection:

vi
t = ΠLf

[
(1− βt)v

i
t−1 + βt∇fi(u

i−1
t ; ξit)

+(1− βt)
(∇fi(u

i−1
t ; ξit)−∇fi(u

i−1
t−1; ξ

i
t)
)]

. (4)

The projection operation ensures that the error of the stochastic
gradient estimator can be bounded; otherwise, they may blow
up as the level becomes deeper. Note that vi

t tracks the value
of ∇fi(u

i−1
t ), and the overall gradient estimation error can be

bounded as:∥∥∥∥∥
K∏
i=1

∇fi(u
i−1
t )−

K∏
i=1

vi
t

∥∥∥∥∥
2

≤ K

∥∥∥∥∥
K∏
i=1

∇fi(u
i−1
t )− v1

t

K∏
i=2

∇fi(u
i−1
t )

∥∥∥∥∥
2

+ . . . +K

∥∥∥∥∥
K−1∏
i=1

vi
t · ∇fK(uK−1

t )−
K∏
i=1

vi
t

∥∥∥∥∥
2

≤ K

(
K∑
i=1

L
2(K−1)
f

∥∥∇fi(u
i−1
t )− vi

t

∥∥2) ,

where the last inequality holds since vi
t is bounded by Lf . That

is to say, on the one hand, we aim to leverage the benefits of vari-
ance reduction in the estimator (we require that the true gradients
are in the projected domain and thus projection does not hinder
the analysis); on the other hand, we do not want the variance
of estimator accumulates too fast over multiple levels (vi is
bounded after projection). Hence, projection on the Jacobian
estimator is a perfect solution. Once the gradient at each level

Algorithm 2: SMVR-NP.

1: Input: time step T , initial points (w1,u1,v1),
parameter c, and learning rate sequence {ηt}

2: for time step t = 1 to T do
3: Set u0

t = wt

4: for level i = 1 to K do
5: Sample ξit
6: Compute the function estimator ui

t according to (3)
7: end for
8: Compute the gradient estimator vt according to (5)
9: Update the decision variable: wt+1 = wt − ηtvt

10: end for
11: Choose τ uniformly at random from {1, . . . , T}
12: Return (wτ ,uτ ,vτ )

is evaluated, we apply the chain rule to calculate the estimated
gradient of the objective function, i.e., vt = v1

tv
2
t · · ·vK

t and
employ gradient descent to update the variable wt at the end of
each time step.

Note that in the first iteration of our algorithm, we eval-
uate the function value and gradient at each level simply as
ui
1 = f(ui−1

1 ; ξi1) and vi
1 = ∇fi(u

i−1
1 ; ξi1). Our algorithm does

not need to use large batches in any iterations, though it is
fully compatible with mini-batch techniques. Here, ξit within
the algorithm can represent either a single training sample or a
batch of samples. Next, we present the sample complexity of
our method.

Theorem 1: If we set c = 10L2
1, ηt = (a+ t)−1/3/L1 and

a = (20L3
1)

3/2, where L1 = O(KLF ) is a positive constant,
our Algorithm 1 ensures that E[‖∇F (wτ )‖] ≤ O(KLF

T 1/3 ).
Remark: The complexity of our approach is on the order

of O(1/ε3), which matches the lower bound in one-level set-
ting [16]. The SMVR method avoids using large batches in
each iteration, which is more practical to implement compared
with the existing method which requires huge batch sizes and
changing the batch size over time [13].

D. Stochastic Multi-Level Variance Reduction Without
Projection Operation

In the previous subsection, we introduce a projection oper-
ation to prevent the estimation error from escalating with the
level becoming deeper. This is necessary because the SMVR
method separately estimates the gradient at each level, and
then combines them using the chain rule. As a result, if each
vi
t is unbounded, it becomes challenging to decompose the

overall error of the whole gradient estimator vt as the errors
in each level, resulting the error blowing up. Therefore, the
projection is crucial for bounding the gradient estimator at each
level. However, implementing the projection (as well as setting
hyper-parameters in SMVR) requires the knowledge of the upper
bound of the gradient at each level, which is often hard to know
in practice.

To overcome this limitation, we propose an alternative ap-
proach that only estimates the overall gradient at each time
step. Specifically, rather than evaluating the gradient at each
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Algorithm 3: Stage-Wise SMVR.

1: Input: initial points (w0,u0,v0), parameter c
2: for stage s = 1 to S do
3: Set ηs and Ts according to Lemma 1
4: ws,us,vs = SMVR (with Ts, (ws−1,us−1,vs−1), c,

ηs)
5: end for
6: Return wS

level as vi
t through the STORM estimator and then multiplying

these evaluations as vt =
∏K

i=1 v
i
t, we directly apply variance

reduction estimation on the overall gradient. That is to say, we
update the overall gradient estimator vt as:

vt = (1− βt)vt−1 + βt

K∏
i=1

∇fi(u
i−1
t ; ξit)

+ (1− βt)

(
K∏
i=1

∇fi(u
i−1
t ; ξit)−

K∏
i=1

∇fi(u
i−1
t−1; ξ

i
t)

)
.

(5)

With this modification, we eliminate the need for a projection op-
eration while still ensuring that the error does not accumulate as
the level becomes deeper. This is because we no longer multiply
vi
t together, thus avoiding the need to bound eachvi

t and compute
its error in the analyses. Instead, we can analyze the overall
gradient estimation error directly without decomposition. By
further employing a normalization technique, we can also avoid
requiring problem-dependent parameters such asLf , LJ , σf , σJ

to set hyper-parameters ηt and βt for our algorithm. We present
this revised approach in Algorithm 2, named SMVR-NP (SMVR
with No Projection). We demonstrate that SMVR-NP achieves
a similar optimal complexity as stated below.

Theorem 2: By setting ηt =
η

‖vt‖ and η = βt = T−2/3, our

Algorithm 2 can guarantee that E[‖∇F (wτ )‖] ≤ O(KLF

T 1/3 ).
Remark: SMVR-NP maintains the same optimal complexity

as the original SMVR, and it is more practical than the initial
SMVR method since it does not need the projection operation
in each level or require to know problem-dependent parameters
to set hyper-parameters ηt and βt. When ‖vt‖ = 0, we set
vt/‖vt‖ = 0 such that we do not update wt in this case.

E. Faster Convergence Under Stronger Conditions

Next, we explore whether additional assumptions could be
used to further improve the complexity of our approach. We
develop a variant of our original method, named Stage-wise
SMVR, which achieves better complexity when the objective
function satisfies the PL condition or convexity.

The new algorithm is a multi-stage adaptation of the original
SMVR method, summarized in Algorithm 3. Instead of decreas-
ing the learning rate ηt polynomially, in Stage-wise SMVR, we
decrease the learning rate η and the parameter β after each
stage, while concurrently increasing the iteration number for
each stage. At the end of each stage, the algorithm saves the
output ws,us,vs, which are used as starting points for the

next stage. With these modifications, we can obtain a better
convergence guarantee under the PL condition or dealing with
convex objective functions.

First, we investigate the case that the objective function sat-
isfies the PL condition, which is a commonly used condition in
the literature [37], [38], [39], [40]. We introduce the definition
of the PL condition below.

Definition 2: The function F (w) satisfies the μ-PL condition
if there exists a positive constant μ such that:

2μ (F (w)− F∗) ≤ ‖∇F (w)‖2.

With this condition, we can prove that the error of function
estimator us and gradient estimator vs decreases after each
stage.

Lemma 1: Define that ε1 = 8L1

μ and εs =
ε1

2s−1 . Then, by set-

ting that T1 = max{4L1K(σ2
f + σ2

J), 2
√
2L1ΔF }, β1 = 1

2L1
,

Ts = max{ 4L
3/2
2

μεs−1
, 4L2

μ3/2√εs−1
}, βs =

μεs−1

L2
, c = 16L2

1, ηs =√
βs/c and L2 = 64L2

1, the output of Algorithm 3 satisfies:

E [F (ws)− F∗] ≤ εs;

K∑
i=1

E
[∥∥fi(ui−1

s )− ui
s

∥∥2 + ∥∥vi
s −∇fi(u

i−1
s )

∥∥2] ≤ μεs.

This lemma indicates the objective gap E[F (ws)− F∗]
is reduced by half after each stage. As a result, after S =
log2(2ε1/ε) stages, the output satisfies E[F (wS)− F∗] ≤ ε.
Based on Lemma 1, we can establish the convergence of our
method in the following theorem.

Theorem 3: Assume F (w) satisfies the μ-PL condition. The
Stage-wise SMVR algorithm achieves an ε-optimal point with
a sample complexity of O(K3L3

F /(με)).
Moreover, if the objective function satisfies the convexity

rather than the PL condition, our method can still use this
property to improve the sample complexity, as indicated in the
following theorem.

Theorem 4: AssumeF (w) is convex and the optimal solution
is bounded by ‖x∗‖ ≤ D. The proposed algorithm attains an
ε-optimal point with a complexity of O(K3L3

F /ε
2).

Remark: The Stage-wise SMVR method behaves optimally
when the objective function enjoys the PL condition or convex-
ity. For smooth and convex functions, our method aligns with
the O(1/ε2) lower bound for this problem [15]. When it comes
to the PL condition, there exists O(1/(με)) lower bound for the
μ-strongly convex setting [15], which is a special case of the PL
condition, thus proving our method is optimal. Compared with
existing results [14], our analysis requires weaker assumptions
and enjoys a better and optimal dependence in terms of μ.

IV. MULTI-LEVEL VARIANCE REDUCTION FOR THE

FINITE-SUM STRUCTURE

In this section, we investigate the case for the finite-sum
structure, where the function in each level is in the form of the
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finite-sum, i.e.,

1

nK

nK∑
j=1

fK,j

⎛⎝· · · 1

n2

n2∑
j=1

f2,j

⎛⎝ 1

n1

n1∑
j=1

f1,j (w)

⎞⎠ · · ·
⎞⎠ .

In this case, we may have the chance to compute the exact
gradient in certain iterations, as a result, we can obtain improved
complexity in terms of ε. First, we introduce the following
assumption in this section, which is also used in the previous
multi-level finite-sum literature [13].

Assumption 4: Each function fi,j is Lf -Lipschitz continuous
and its Jacobian ∇fi,j is LJ -Lipschitz continuous.

It is well-known that the optimal sample complexity for
non-convex objectives in the single-level finite-sum setting is
O(n+

√
n

ε2 ) [24]. To achieve this optimal complexity, a straight-
forward approach is to integrate the existing SVRG [34], [41]
technique with our SMVR method. This strategy is also used in
the previous multi-level finite-sum literature [13], which incor-
porates SVRG into the SPIDER algorithm. However, SVRG is
a two-loop algorithm and requires computing the full version of
the function value and the gradient periodically at “checkpoint
steps”, which is not practical in real-world scenarios.

To avoid this limitation, we propose a novel single-loop
variance reduction technique for the finite-sum structures. In
each time step t, for level i, we first sample it randomly from
{1, . . . , ni}, and then we estimate the function value as:

ui
t = (1− β)ui

t−1 + βrit

+ (1− β)
[
fit(u

i−1
t )− fit(u

i−1
t−1)

]
. (6)

By setting rt = fit(u
i−1
t ), this estimation reduces to our original

SMVR method. To achieve the optimal rate in the finite-sum
structure, we adopt the similar design of SAG method [17],
and set rit = fit(u

i−1
t )− hit

t + 1
ni

∑ni

j=1 h
j
t , where ht repre-

sents the historical record of past function values, updated as

hj
t+1 =

{
fit (u

i−1
t ) j = it

hj
t j 
= it

. This formulation is a combination of

the SAG algorithm and STORM method, and effectively ensures
that the estimation error decreases over time without using
the checkpoint technique or the two-loop design. Similarly, we
compute the gradient for each level as follows:

vi
t = ΠLf

[
(1− β)vi

t−1 + βzit

+(1− β)
(∇fit(u

i−1
t )−∇fit(u

i−1
t−1)

)]
, (7)

where zit = ∇fit(u
i−1
t )− giti,t +

1
ni

∑ni

j=1 g
j
i,t and we can set

that gji,t+1 =
{∇fit (u

i−1
t ) j = it

gj
i,t j 
= it

. Note that in each time step,

we first calculate vi
t and then update gi,t, which helps to avoid

the dependency issues in the analyses. Finally, we estimate the
overall gradient by multiplying v1 · · ·vK together and apply
gradient descent for updating. The whole algorithm, named
SMVR-FS (SMVR for Finite-Sum structure), is summarized in
Algorithm 4.

Next, we present the theoretical result for non-convex func-
tions as follows:

Theorem 5: Setting η = O(1/
√
nmax) and β = O(1/nmax),

our method can ensure that E[‖F (wτ )‖] ≤ O(n
1/4
max K1/4LF

T 1/2 ).

Algorithm 4: SMVR-FS.

1: Input: time step T , initial points (w1,u1,v1),
parameter c, and learning rate sequence {ηt}

2: for time step t = 1 to T do
3: Set u0

t = x
4: for level i = 1 to K do
5: random select it from {1, . . . , ni}
6: Compute the function estimator ui

t according to (6)
7: Compute the gradient estimator vi

t according to (7)
8: end for
9: Update gradient estimation: vt = ΠK

i=1v
i
t

10: Update the decision variable: wt+1 = wt − ηvt

11: end for
12: Choose τ uniformly at random from {1, . . . , T}
13: Return (wτ ,uτ ,vτ )

Remark: The complexity of SMVR-FS method is on the order
of O(

√
nmax/ε

2), where nmax = max{n1, . . . , nK}, matching
the lower bound for the one-level setting [19]. Our single-loop
method avoids using huge batches and checkpoint steps, which is
more practical to implement compared with the existing method
which requires large batch sizes and the use of checkpoints [13].

Remark: We also have to note that there is a trade-off between
sample complexity and storage complexity. To obtain optimal
sample compelxity, we borrow the idea from the SAG algorithm,
and thus require storing past gradients estimators. This storage
requirement is the common issue for SAG or SAGA type vari-
ance reduction methods.

Moreover, by adopting a similar stage-wise design as in
Algorithm 3, but with constant values for ηs, βs and Ts in each
stage, we can achieve improved complexities for convex, PL, or
strongly convex functions:

Theorem 6: Assuming thatF (w) satisfies theμ-PL condition
or is μ-strongly convex, our stage-wise SMVR-FS algorithm
can achieve an ε-optimal point with a sample complexity of
O(

√
nmaxKL2

F /μ log 1/ε) by setting that ηs = O(1/
√
nmax),

βs = O(1/nmax) and Ts = 4/μηs.
Theorem 7: Assuming that F (w) is convex and the norm of

the optimal solution x∗ is bounded by ‖x∗‖ ≤ D, our stage-wise
SMVR-FS algorithm attains an ε-optimal point with a complex-
ity of O(

√
nmaxKL2

F /ε log(1/ε)).
Remark: We achieve linear convergence O(log(1/ε)) for the

PL condition, aligning with the current results for the single-level
finite-sum problem [19]. It is also the first time that we obtain
such complexities for convex, PL, or strongly convex objectives
under the multi-level finite-sum setting.

V. MULTI-LEVEL VARIANCE REDUCTION METHOD WITH

ADAPTIVE LEARNING RATES

In this section, we demonstrate that the proposed method can
be effectively adapted to incorporate adaptive learning rates and
maintain the same sample complexity. Adaptive learning rates
are widely used in stochastic optimization problems, and many
successful methods have been proposed, such as AdaGrad [42],
Adam [43], AMSGrad [44], AdaBound [45], etc. Despite their
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prevalence, their application in stochastic multi-level setting
remains less explored. Inspired by the above methods, we in-
troduce an adaptive version of our method, named Adaptive
SMVR. To use adaptive learning rates, we modify the decision
variable update step from wt+1 = wt − ηtvt to:

wt+1 = wt − ηt√
ht + δ

vt, (8)

where δ > 0 is a parameter to prevent dividing by zero, and ht

can take following forms:

AdaGrad -type: ht =
1

t

t∑
i=1

v2
i

Adam -type: ht = (1− β′
t)ht−1 + β′

tv
2
t

AMSGrad -type: h′
t = (1− β′

t)h
′
t−1 + β′

tv
2
t ,

ht = max (ht−1,h
′
t) . (9)

Inspired by the recent study of Adam-style methods [46], we
establish the sample complexity of the Adaptive SMVR in
Theorem 8 using similar analyses.

Theorem 8: By setting c = 10L2
3, ηt = (a+ t)−1/3/L3 and

a = (20L3
3)

3/2, Adaptive SMVR with learning rates defined in
(8) and (9) can ensure that E[‖∇F (wτ )‖] ≤ O(KLF

T 1/3 ), where
L3 is a constant indicated in the proof.

VI. EXPERIMENTS

In this section, we conduct a series of numerical experiments
to evaluate the performance of the proposed methods over three
different tasks. We compare our method with existing multi-level
algorithms, including A-TSCGD [10], NLASG [11], Nested-
SPIDER [13] and SCSC [12]. For the SMVR method, hyper-
parameters βt and ηt are set up according to Theorem 1, and
the parameter L1 is searched from the set {0.5, 1, 5, 10}. When
it comes to SMVR-FS, the parameter nmax is searched from
the set {1e1, 1e2, 1e3, 1e4, 1e5}. For other methods, we choose
the hyper-parameters recommended in their original papers or
conduct a grid search to select the best hyper-parameters. As
for the projection operation ΠLf

, we simply set Lf as a large
value and provide a sensitivity analysis in terms of tuning Lf

in the first experiment. All the curves in the experiment part are
averaged over 20 runs.

A. Risk-Averse Portfolio Optimization

We first consider the risk-averse portfolio optimization prob-
lem. Suppose we have d assets to invest during each time step
{1, . . . , T}, and rt ∈ Rd denotes the payoff of d assets in the
time step t. The objective is to maximize investment returns and
minimize the risk simultaneously. A useful formulation is the
mean-deviation risk-averse optimization model [5], where the
risk is defined as the standard deviation. This mean-deviation
model is widely used in practice and often used for experimental
validation in multi-level optimization research [10], [14]. The

problem can be formulated as:

max
x∈X

1

T

T∑
t=1

〈rt, x〉 − λ

√√√√ 1

T

T∑
t=1

(〈rt, x〉 − 〈r̄, x〉)2,

where r̄ =
∑T

t=1 rt, decision variable x denotes the investment
quantity vector in d assets. Note that the domain X is a simplex,
and we use a projection operation to ensure that the variable
x is within the domain. The above problem is a three-level
stochastic compositional optimization problem, and each layer
can be represented as:

f1(x) =

(
1

T

T∑
t=1

〈rt, x〉, x
)
,

f2(y, x) =

(
y,

1

T

T∑
t=1

(〈rt, x〉 − y)2
)
,

f3 (z1, z2) = −z1 + λ
√
z2.

In the experiment, we test different methods on real-world
datasets Industry-10, Industry-12, Industry-17, and Industry-30
from Keneth R. French Data Library.1 These datasets consist of
10, 12, 17, and 30 industrial assets payoff over 25105 consecu-
tive periods, respectively. Following [13], we set the parameter
λ = 0.2.

Fig. 1 shows a comparison of the loss values and the gradient
norms against the number of samples drawn by each method.
We can find that our methods (including SMVR, SMVR-NP, and
SMVR-FS) converge much faster than other algorithms across
all tasks. More specifically, both the loss and the gradient norms
of SMVR and its variants show a more rapid decrease, demon-
strating the low sample complexity of the proposed method.

We also conduct experiments to investigate the impact of
tuning the parameter Lf for the projection operation ΠLf

in the
SMVR method. For the theoretical analysis, setting Lf above
the actual upper bound of the gradient should not alter the order
of the convergence rate, although it may affect the size of the
constant factor in the rate. Here, we adjust the Lf from the set
{5, 10, 50, 100}, and the results are depicted in Fig. 2, where
Lf = NA indicates that the projection operation is not used,
equivalent to assigning Lf an extremely large value, such as
1e7. We find that the method performs very closely as long as
Lf is set as a large number and would perform worse whenLf is
small. This finding suggests that in practical applications, setting
Lf to a high value is a viable strategy.

B. Hierarchical Tilted Empirical Risk Minimization

Hierarchical Tilted Empirical Risk Minimization (TERM)
is a method proposed by [2], [47], which can deal with
noisy and imbalanced machine learning problems simul-
taneously. The TERM objective is given by R̃(w) :=
1
t log(

1
N

∑
i∈[N ] e

tl(w;zi)), where l(w; zi) denotes the loss for
sample zi from data {z1, . . . , zN}. It can mitigate outliers when
t < 0 and handle class imbalance when t > 0. When the task

1https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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Fig. 1. Results for Risk-Averse Portfolio Optimization.

Fig. 2. Results for Risk-Averse Portfolio Optimization.

involves outliers and class imbalance at the same time, the
Hierarchical TERM approach can be used:

J̃(w) :=
1

t
log

(
1

|D|
∑
G⊆D

|G|etR̃G(w)

)
,

with R̃G(w) :=
1

τ
log

(
1

|G|
∑
z∈G

eτ�(w;z)

)
,

where D represents all training samples and G denotes samples
for one specific class. The parameters t and τ are constants deal-
ing with different goals (i.e., outliers and class imbalance). This
framework is a four-level stochastic compositional optimization,

with each layer represented as:

f1(w) =
1

|G|
∑
z∈G

eτ�(w;z), f2(x) =
1

τ
log(x),

f3(y) =
1

|D|
∑
G⊆D

|G|ety, f4(z) = 1

t
log(z).

In the experiment, we use the “HIV-1”,2 “Australian”3, “Breast-
cancer”3 and “svmguide1”3 datasets, and make the training
data noisy and imbalanced, where nearly 30% of the labels are

2https://archive.ics.uci.edu/ml/datasets.php
3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Fig. 3. Results for Hierarchical Tilted Empirical Risk Minimization.

TABLE III
CLASSIFICATION ACCURACIES (% ) FOR HIERARCHICAL TILTED EMPIRICAL RISK MINIMIZATION

reshuffled and the number of rare class versus common class is
1:20. We set τ = −2, t = 10 according to the origin paper and
repeat each experiment 20 times.

As shown in Fig. 3, our methods perform best among all other
algorithms. Both the loss value and the norm of the gradient con-
verge more rapidly to a small value compared to other methods.
We also report the classification accuracy in Table III. It shows
that SMVR and its variants achieve the highest accuracy rates
on the rare class and the overall task simultaneously, indicating
the effectiveness of our methods.

C. Multi-Step Model-Agnostic Meta-Learning

Finally, we conduct experiments on Multi-step Model-
Agnostic Meta-Learning (MAML). Multi-step MAML aims to
find a good initialization point that performs well in different
tasks after taking a few steps of gradient descent. Classical
one-step MAML is formed as:

min
x

F (θ) :=
1

M

M∑
m=1

Fm (x− α∇Fm(x)) ,

with Fm(θ) := Eξm [f (θ; ξm)] ,

where α is the learning rate, Fm denotes the loss for task m and
ξm represents the training samples for task m. One-step MAML
is a two-level problem, involving a single update to the initial
point followed by evaluation across different tasks. In practice,
it’s common to update the initial point multiple times to enhance
results, such as the five-step updates used by [48], which is a
six-level compositional problem.

Following [48], we conduct experiments on 5-way 1-shot and
5-shot tasks on Omniglot dataset [49]. Each task is a 5-class
classification problem, with only 1 or 5 training samples for
each class. We conduct a 5-step MAML and report the accuracy
of different methods against the number of training samples in
Fig. 4. Since adaptive learning rates are widely used in neural
networks, which are also applied in Multi-step MAML, we
implement Adaptive SMVR methods in these tasks, denoted
as SMVR-ADAM. We use the adaptive learning rate defined in
(8) and (9) and choose the commonly used Adam-type. As can
be seen, the accuracy of SMVR (and its variants), as well as
SMVR-ADAM, increases rapidly in both training and testing
sets, and outperforms other methods dramatically. Although
SMVR and SMVR-ADAM enjoy the same sample complexity,
SMVR-ADAM demonstrates faster convergence in practice due
to the adaptive learning rate used.
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Fig. 4. Results for Multi-step Model-Agnostic Meta-Learning.

VII. CONCLUSION

In this paper, we propose an optimal algorithm named SMVR
for stochastic multi-level composition optimization. We prove
that the proposed algorithm, by using variance reduced estimator
of function values and Jacobians, coupled with a projection
operation, achieves a sample complexity of O(1/ε3) for finding
an ε-stationary point. This complexity aligns with the lower
bound even in the one-level setting, and our method avoids using
batches in each iteration. Later, we demonstrate that by directly
estimating the overall gradient and employing the normalization
technique, we are able to remove the projection operation and
avoid requiring problem-dependent parameters. When the ob-
jective function further satisfies the convexity or PL condition,
we develop a stage-wise version of SMVR to obtain the optimal
complexity of O(1/ε2) or O(1/ε). For the finite-sum struc-
ture, we propose the SMVR-FS method. By utilizing the past
gradients and function values, SMVR-FS attains the complex-
ity of O(

√
n/ε2) for non-convex functions, O(

√
n/ε log(1/ε))

for convex functions, and O(
√
n/μ log(1/ε)) for μ-PL or μ-

strongly convex functions. Finally, to take advantage of adaptive
learning rates, we also propose Adaptive SMVR, which can
achieve the same complexity with the learning rate changing
adaptively. Experiments on three real-world tasks demonstrate
the superiority of the proposed methods.
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