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Abstract—Different from traditional one-sided clustering techniques, coclustering makes use of the duality between samples and

features to partition them simultaneously. Most of the existing co-clustering algorithms focus on modeling the relationship between

samples and features, whereas the intersample and interfeature relationships are ignored. In this paper, we propose a novel

coclustering algorithm named Locally Discriminative Coclustering (LDCC) to explore the relationship between samples and features as

well as the intersample and interfeature relationships. Specifically, the sample-feature relationship is modeled by a bipartite graph

between samples and features. And we apply local linear regression to discovering the intrinsic discriminative structures of both

sample space and feature space. For each local patch in the sample and feature spaces, a local linear function is estimated to predict

the labels of the points in this patch. The intersample and interfeature relationships are thus captured by minimizing the fitting errors of

all the local linear functions. In this way, LDCC groups strongly associated samples and features together, while respecting the local

structures of both sample and feature spaces. Our experimental results on several benchmark data sets have demonstrated the

effectiveness of the proposed method.

Index Terms—Coclustering, clustering, bipartite graph, local linear regression.
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1 INTRODUCTION

DATA clustering is a fundamental topic in unsupervised
learning, and becomes a common technique for data

mining, information retrieval, pattern recognition, bioinfor-
matics, etc. The goal of clustering is to partition the data
points into clusters such that those within each cluster are
more closely related to one another than points assigned to
different clusters [1]. Typically, the data is formulated as a
2D matrix where one dimension represents samples, and
the other represents features. Traditional clustering algo-
rithms [2], [3], [4], [5] are one-sided in the sense that they
only consider clustering samples based on their distribu-
tions on features, or vice versa.

Recently, coclustering has become a topic of significant

interest in text mining [6], [7], [8], microarray analysis [9],

[10], [11], and Collaborative Filtering (CF) [12], [13]. Instead

of clustering one dimension of the data matrix, coclustering

makes use of the duality between samples and features to

partition both dimensions simultaneously. It has been

shown that coclustering often yields impressive perfor-

mance improvement over traditional one-sided clustering

algorithms. More importantly, the resulting coclusters may

reveal valuable insights about the data. For example,

clustering documents and words simultaneously provides
one way to describe the semantics, i.e., using the words in a
cocluster to annotate itself; coclustering of genes expression
data can be used to identify groups of genes showing
similar activity patterns under a set of conditions; cocluster-
ing in CF helps to discover groups of users that exhibit
highly correlated ratings on groups of items.

Most of the existing coclustering algorithms focus on
modeling the relationship between samples and features,
but with different strategies. The graph-based coclustering
methods [7], [8] construct a bipartite graph to represent the
relationship between samples and features. In the informa-
tion theory-based coclustering methods [14], [15], [16],
samples and features are treated as instances of two
discrete random variables, and the joint probability dis-
tribution between them is used to encode the sample-
feature relationship. In the matrix factorization-based
coclustering techniques [17], [18], sample-feature relation-
ship is modeled from the perspective of data reconstruction.
Despite of their successes in making use of the sample-
feature relationship, these algorithms fail to consider the
intersample and interfeature relationships, which are
essential for data clustering.

In this paper, we propose a novel coclustering algorithm
named Locally Discriminative Coclustering (LDCC) to
explore the sample-feature relationship as well as the
intersample and interfeature relationships. Specifically, the
sample-feature relationship is modeled by a bipartite graph
[7], [8], where the edge signifies an association between a
sample and a feature. And we apply local linear regression
to discovering the intrinsic discriminative structures of both
sample space and feature space. For each local patch in the
sample and feature spaces, a local linear function is trained
to predict the labels of the points belonging to this patch.
The intersample and interfeature relationships are thus
encoded in the local regression functions by minimizing the
fitting errors over all the local patches. In this way, LDCC
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groups strongly associated samples and features together,
while respecting the local discriminative structures of both
sample and feature spaces. We further develop an efficient
computational scheme to solve the corresponding optimi-
zation problem.

Our optimization scheme first projects the samples and
features into a common subspace and then performs
coclustering in this subspace. The original Bipartite Spectral
Graph Partitioning (BGP) [7], [8] methods also adopt this
strategy, and the low-dimensional representation is com-
puted directly from the data matrix. Thus, by visualizing
the projection results of BGP and LDCC, we can see the
effect of capturing the intersample and interfeature relation-
ships intuitively. Fig. 1 shows the 1D projection results
obtained by applying BGP and LDCC to one 2-Class subset
of the WebKB corpus. As can be seen from Fig. 1a, BGP
maps most of the features and samples together, which is
clearly undesirable for coclustering. That is probably
because BGP only considers the sample-feature relationship
contained in the data matrix. When the data matrix is highly
sparse, the projection results obtained from this limited
information may be very unstable. From Fig. 1b, we can see
that LDCC makes a big improvement compared with BGP.
The two sample classes are almost separable, and features
are distributed more evenly.

The outline of the paper is as follows: in Section 2, we
provide a brief review of the related work. Our proposed
Locally Discriminative Coclustering algorithm is intro-
duced in Section 3. In Section 4, we compare our algorithm
with the state-of-the-art clustering and coclustering algo-
rithms. Finally, we provide some concluding remarks and
suggestions for future work in Section 5.

Notation. Small letters (e.g., �) are used to denote
scalars. Lower case bold letters (e.g., w) are used to denote
column vectors and k � k is used to denote the ‘2-norm of a
vector. Capital letters (e.g., A) are used to denote matrices.
We use Trð�Þ to denote the trace of a matrix, and k � kF to
denote the Frobenius norm of a matrix. Script capital letters
(e.g., X ) are used to denote ordinary sets. Blackboard bold
capital letters (e.g., IR) are used to denote number sets.

2 RELATED WORK

The research literature on clustering is vast and mainly
about one-sided clustering [19]. Although introduced quite
early [20], coclustering receives much attention only in
recent years due to its application to many practical
problems, including text mining and microarray analysis.
In this section, we briefly review three types of clustering or

coclustering algorithms: graph partition-based, information
theory-based, and matrix factorization-based.

Through constructing a similarity graph where vertices
correspond to data points and edge weights represent
degrees of similarity, clustering can be formulated as the
problem of graph partitioning. Spectral partition methods
have been used effectively for solving several graph
partitioning objectives, such as ratio cut [21] and Normal-
ized Cut (Ncut) [22]. In [7] and [8], the authors model the
problem of coclustering documents and words as finding
minimum cut vertex partitions in a bipartite graph between
documents and words, which is then relaxed and solved by
spectral method. Recently, a new method for partitioning
the document-word bipartite graph called Isoperimetric
Coclustering Algorithm (ICA) is proposed [6]. The ICA
heuristically minimizes the ratio of the perimeter of the
bipartite graph partition and the area of the partition under
an appropriate definition of graph-theoretic area. In [23], a
novel algorithm named Consistent Bipartite Graph Copar-
titioning is proposed for star-structured high-order hetero-
geneous data co-clustering. The bipartite graph model has
also been successfully applied to cocluster genes and
conditions in microarray analysis [10]. It is important to
note that there are no intersample and interfeature edges in
the bipartite graph model.

In information theory-based methods, samples, and
features are treated as the instances of two random
variables, of which the joint distribution can be empirically
estimated from the data matrix. The problem of clustering
samples or features can be viewed as the process of
compressing the associated random variable. The Informa-
tion Bottleneck (IB) Method [24] is a one-sided clustering
algorithm which compresses one random variable so that
the mutual information about the other is preserved as
much as possible. Later, an agglomerative hard vision of the
IB method is applied to clustering documents after
clustering word, which is called Double Clustering (DC)
[14]. Iterative Double Clustering (IDC) [15] extends DC to
cluster documents and words iteratively. Both DC and IDC
are heuristic procedures, whereas the Information-Theoretic
Coclustering (ITCC) [16] clearly quantifies the loss in
mutual information due to coclustering and presents an
algorithm that reduces this loss function monotonically. A
more generalized coclustering framework was proposed in
[25] wherein any Bregman divergence can be used in the
objective function, and various conditional expectation-
based constraints can be supported.

Matrix factorization techniques have been widely
studied and used for clustering and coclustering. The early
work is mainly based on Singular Value Decomposition
(SVD) or eigenvalue decomposition. Latent Semantic
Indexing (LSI) [26] is a typical algorithm for one-sided
document clustering, which first projects documents onto a
lower dimensional subspace through SVD and then
clusters documents in the reduced subspace. Nonnegative
Matrix Factorization (NMF) [27] is a recently popularized
technique which approximates the nonnegative data
matrix by the product of two nonnegative matrices.
Although the original motivation of NMF is to learn
parts-based representations, it has been successfully
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Fig. 1. The 1D projection results of one 2-Class subset selected from the
WebKB corpus. To distinguish between features and samples, we plot
them in different shape, size, and color.



applied to one-sided clustering [2]. As an extension,
Nonnegative Matrix Trifactorization (NM3F) is proposed
for coclustering [17], [18]. In NM3F, the original data
matrix X is decomposed into the production of three
nonnegative (or two nonnegative and one unconstrained)
matrices: X ¼ GSHT , where G gives row clusters and H

gives column clusters. Graph regularized nonnegative
matrix trifactorization for coclustering is introduced in
[28]. To reduce the computational cost, a general cocluster-
ing framework named Coclustering based on Column and
Row Decomposition (CRD) is proposed [29]. CRD does not
require the whole data matrix to be in the main memory,
and the execution time is linear in m (the number of
samples) and n (the number of features).

3 LOCALLY DISCRIMINATIVE COcLUSTERING

The coclustering problem considered in this paper is
formally defined as follows: given a nonnegative data
matrix X 2 IRm�n, we use the xTi to denote the ith row
(sample) and f j to denote the jth column (feature) in X. The
goal of coclustering is to simultaneously group the samples
fx1; . . . ;xmg � IRn and features ff 1; . . . ; fng � IRm into
c coclusters. The clustering result of samples is represented
by a Partition Matrix (PM) G 2 f0; 1gm�c, such that Gir ¼ 1
if xi belongs to cluster r and Gir ¼ 0 otherwise. Similarly,
the clustering result of features is represented by a PM
H 2 f0; 1gn�c.

As discussed before, most of the existing coclustering
algorithms only consider the sample-feature relationship. In
the following, we introduce our Locally Discriminative
Coclustering which makes use of the sample-feature
relationship, as well as the intersample and interfeature
relationships for coclustering. We begin with the discussion
on modeling the sample-feature relationship.

3.1 Modeling the Sample-Feature Relationship

Similar to the previous approaches [7], [8], we model the
relationship between samples and features using a bipartite
graph. In the bipartite graph model, m samples fx1; . . . ;xmg
and n features ff 1; . . . ; fng are two sets of vertices. An edge
<xi, f j> exists if and only if the jth feature is observed in
the ith sample. And the edge weight is set to be Xij, which
represents the association between the sample xi and the
feature f j. It is natural to require that the labels of a feature
and a sample should be the same if they are strongly
associated.

Let gTi be the ith row of G, i.e., gi is the indicator vector
of sample xi. hTi is the ith row of H, i.e., the indicator
vector of feature f j. Let DS 2 IRm�m be the diagonal degree
matrix of samples with DS

ii ¼
Pn

k¼1 Xik, and DF 2 IRn�n be
the diagonal degree matrix of features with DF

jj ¼Pm
k¼1 Xkj. In order to group strongly associated samples

and features together, the following loss function can be
used [30]:

�1ðG;HÞ ¼
Xm
i¼1

Xn
j¼1

giffiffiffiffiffiffiffi
DS
ii

q � hjffiffiffiffiffiffiffi
DF
jj

q
�������

�������
2

Xij: ð1Þ

By minimizing (1), we expect that if xi and f j are strongly

associated (with a large Xij), the indicator vectors of them

should be the same. After some algebraic steps, (1) can be

rewritten in the matrix form as follows:

�1ðG;HÞ ¼
Xm
i¼1

Xn
j¼1

kgik2

DS
ii

� 2gTi hjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DS
iiD

F
jj

q þ khjk
2

DF
jj

0
B@

1
CAXij

¼
Xm
i¼1

kgik2 þ
Xn
j¼1

khjk2 �
Xm
i¼1

Xn
j¼1

2Xijg
T
i hjffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DS
iiD

F
jj

q
¼ mþ n� 2Tr ðGT ðDSÞ�1=2XðDF Þ�1=2HÞ:

ð2Þ

Since mþ n is a constant, the loss function in (2) can be

simplified as

~�1ðG;HÞ ¼ �2TrðGTXNHÞ; ð3Þ

where

XN ¼ ðDSÞ�1=2XðDF Þ�1=2: ð4Þ

3.2 Modeling the Intersample and Interfeature
Relationships

Inspired from recent developments in local learning [31],

[32], [33], we propose to discover the intrinsic discrimina-

tive structure of both sample and feature spaces using local

linear regression. The key mathematical derivations stated

below stem from the work in [34], where Bach and

Harchaoui apply global linear regression to clustering.

3.2.1 Local Linear Regression in the Sample Space

For each sample xi, we define the local patchMðxiÞ be the

set containing xi and its neighbor points, with the size mi.

We define Ai ¼ fk j xk 2 MðxiÞg to be the set containing

the indices of samples inMðxiÞ. Let Xi 2 IRmi�n be the local

data matrix consisting of samples in MðxiÞ, that is,

Xi ¼ ½xk�T for k 2 Ai. Let Gi 2 IRmi�c be the local Partition

Matrix of MðxiÞ, that is, Gi ¼ ½gk�T for k 2 Ai. Since the

local Partition Matrix Gi is a part of G, we can construct a

selection matrix Si 2 f0; 1gmi�m for each Gi such that

Gi ¼ SiG: ð5Þ

Si is constructed as follows: Si ¼ ½ek�T for k 2 Ai, where ek
is a m-dimensional vector whose kth element is one and all

other elements are zero.
We consider fitting a multioutput linear function fðXiÞ ¼

XiWi þ 1mi
bTi for each local path MðxiÞ to model the

relationship between Xi and Gi [31]. In this linear function,

1mi
is a mi-dimensional vector of all ones, Wi 2 IRn�c is the

coefficient matrix, and bi 2 IRc is the intercept. Fitting this

function can be mathematically formulated as

min
Wi;bi

1

mi

��Gi �XiWi � 1mi
bTi
��2

F
þ �kWik2

F : ð6Þ

The penalty term �kWik2
F is introduced to avoid over-

fitting [1].
Taking the first order partial derivatives of (6) with

respective to Wi, bi and requiring them to be zero, we get

the optimal W �
i and b�i [34]
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W �
i ¼

�
XT
i �mi

Xi þmi�I
��1

XT
i �mi

Gi; ð7Þ

b�i ¼
1

mi

�
GT
i � ðW �

i Þ
TXT

i

�
1mi

; ð8Þ

where I is the identity matrix and � ¼ I � 1
mi

1mi
1Tmi

is the
centering matrix.

Substituting the values of W �
i and b�i into (6), we obtain

the fitting error of the local function [34]

Ji ¼
1

mi
kGi �XiW

�
i � 1mi

ðb�i Þ
Tk2

F þ �kW �
i k

2
F

¼ 1

mi
Gi �XiW

�
i �

1mi
1Tmi

mi
ðGi �XiW

�
i Þ

�����
�����

2

F

þ �kW �
i k

2
F

¼ 1

mi
k�ðGi �XiW

�
i Þk

2
F þ �kW �

i k
2
F

¼ 1

mi
k�
�
I �Xi

�
XT
i �Xi þmi�I

��1
XT
i �
�
Gik2

F

þ �k
�
XT
i �Xi þmi�I

��1
XT
i �Gik2

F

¼ 1

mi
Tr
�
GT
i

�
���Xi

�
XT
i �Xi þmi�I

��1
XT
i �
�2
Gi

�
þ �Tr

�
GT
i �Xi

�
XT
i �Xi þmi�I

��2
XT
i �Gi

�
¼ 1

mi
Tr
�
GT
i

�
���Xi

�
XT
i �Xi þmi�I

��1
XT
i �
�
Gi

�
:

ð9Þ

In the above derivations, we have used the fact that the
centering matrix is idempotent, so that � ¼ �k for
k ¼ 1; 2; . . . . For each local patch MðxiÞ, we define

LSi ¼
1

mi

�
���Xi

�
XT
i �Xi þmi�I

��1
XT
i �
�
; ð10Þ

which characterizes the local discriminative structure of
MðxiÞ.

The fitting error Ji consists Gi as the variable and a good
local Gi should give rise to minimal fitting error. In other
words, we are looking for a local partition such that the
clusters are most linearly separated, where the separability
of clusters is measured through the minimum of the
discriminative cost in (6) [34]. Then, it is naturally to
require the global Partition Matrix G to minimize the
summation of the fitting errors over all the local patches
fMðxiÞgmi¼1, which leads to the following loss function:

�2ðGÞ ¼
Xm
i¼1

Ji ¼
Xm
i¼1

Tr
�
GT
i L

S
i Gi

�

¼
Xm
i¼1

Tr
�
GTSTi L

S
i SiG

�
¼ Tr

�
GTLSG

�
;

ð11Þ

where

LS ¼
Xm
i¼1

�
STi L

S
i Si
�
: ð12Þ

The formulation of LSi in (10) involves the inverse of one
m�m matrix, which is computationally expensive when

the dimensionality is high. In the following, we use the
Woodbury-Morrison formula [35] to derive a more efficient

equation [34]

LSi ¼
1

mi

�
���Xi

�
XT
i �Xi þmi�I

��1
XT
i �
�

¼ 1

mi
�
�
I ��Xi

�
XT
i �Xi þmi�I

��1
XT
i �
�
�

¼ 1

mi
�
�
I � I�Xi

�
XT
i �I�Xi þmi�I

��1
XT
i �I

�
�

¼ 1

mi
� I þ 1

mi�
�mi

XiX
T
i �

� ��1

�

¼ ��ðmi�I þ�XiX
T
i �Þ�1�:

ð13Þ

Using the above equation, we only need to inverse a mi �
mi matrix, which would be much efficient, since the size of

the local patch is usually very small.

3.2.2 Local Linear Regression in the Feature Space

Similarly, we can use the local linear regression to model

the interfeature relationship.
For each feature f j, we define the local patch Nðf jÞ be

the set containing f j and its neighbors, with the size nj.
And we define Bj ¼ fk j fk 2 Nðf jÞg be the set containing

the indices of features in Nðf jÞ. Let Fj 2 IRnj�m be the local
feature matrix consisting of features in Nðf jÞ. Let Hj 2
IRnj�c be the local Partition Matrix of Nðf jÞ. Define a
selection matrix Uj ¼ ½ek�T for k 2 Bj, where ek is a

n-dimensional vector whose kth element is one and all
other elements are zero. We have

Hj ¼ UjH: ð14Þ

We also train a local linear function gðFjÞ ¼ FjVj þ 1nja
T
j

for each local patch Nðf jÞ to best approximate Hj. As
before, we minimize the fitting errors of all the local

functions to capture the interfeature relationship. Following
the same derivations in Section 3.2.1, we obtain the

following loss function of H:

�3ðHÞ ¼ TrðHTLFHÞ; ð15Þ

where

LF ¼
Xn
j¼1

�
UT
j L

F
j Uj

�
; ð16Þ

LFj ¼
1

nj
�
�
I � Fj

�
FT
j �Fj þ nj�I

��1
FT
j

�
�

¼ ��
�
nj�I þ�FjF

T
j �
��1

�:

ð17Þ

3.3 The Objective

Define P 2 f0; 1gðmþnÞ�c be the total Partition Matrix con-
sisting of G and H

P ¼ G
H

� 	
: ð18Þ

Combining (3), (11), and (15), the loss function of P is

given by
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�ðP Þ ¼ ~�1ðG;HÞ þ ��2ðGÞ þ ��3ðHÞ
¼ Trð�2GTXNH þ �GTLSGþ �HTLFHÞ

¼ Tr ½GT HT � �LS �XN

�ðXNÞT �LF

" #
G

H

� 	 !

¼ Tr PT �LS �XN

�ðXNÞT �LF

" #
P

 !
;

ð19Þ

where � � 0 and � � 0 are the tradeoff parameters.
With the loss function in (19), we define the LDCC

problem as:

Definition 1. Locally Discriminative Coclustering:

min
P

TrðPTLP Þ

s:t: L ¼ �LS �XN

�ðXNÞT �LF

� 	
P 2 f0; 1gðmþnÞ�c; P1c ¼ 1mþn;

ð20Þ

where XN , LS , and LF are given by (4), (12), and (16),

respectively.

3.4 The Algorithm

The LDCC problem is essentially a combinatorial optimiza-
tion problem which is hard to solve. In order to solve it

efficiently, we relax it according to the spectral clustering
method in [3] and [36]. First, we map all the features and
samples into a common low-dimensional subspace, and
then cluster features and samples simultaneously in this
subspace. Let Z be a ðmþ nÞ � r matrix whose rows give
the low-dimensional embeddings of all the samples and
features in a r-dimensional subspace. The optimal Z� is
obtained by solving the following problem:

min
Z

TrðZTLZÞ
s:t: Z 2 IRðmþnÞ�r; ZTZ ¼ I:

ð21Þ

Let z1; . . . ; zr be the smallest eigenvectors of L ordered
according to their eigenvalues. Then, the optimal solution
Z� of (21) is given by

Z� ¼ ½z1; . . . ; zr�: ð22Þ

After normalization each row of Z� [3], we perform Kmeans
to group the samples and features into c coclusters.

In summary, the algorithm of LDCC is stated below.

1. Constructing the matrix L.

a. Calculate XN by normalizing the data matrix X
according to (4).

b. Find the k nearest neighbors of each sample, and
calculate LS according to (12).

c. Find the k nearest neighbors of each feature, and
calculate LF according to (16).

d. Construct L from XN , LS , and LF according to
(20).

2. Dimensionality reduction.

a. Calculate the r smallest eigenvectors of L:
z1; . . . ; zr.

b. Form the matrix Z� ¼ ½z1; . . . ; zr� by stacking the
eigenvectors in columns.

3. Coclustering in the low-dimensional subspace.

a. Normalize each row of Z� to have unit length.
b. Cluster the samples and features into c coclus-

ters via Kmeans.

3.5 Complexity Analysis of LDCC

The computational complexity of LDCC is dominated by
the following steps:

. Find the k nearest neighbors of each sample, and
calculate LS according to (12).

- Oðm2nÞ is used to calculate the pairwise
distances between the m samples, and
Oðm2 logmÞ is used for k-nearest neighbors
finding for all the m samples.

- Oðmðnk2 þ k3ÞÞ is used to calculate LSi according
to (13) for all the m samples.

. Find the k nearest neighbors of each feature, and
calculate LF according to (16).

- Oðn2mÞ is used to calculate the pairwise
distances between the n features, and
Oðn2 lognÞ is used for k-nearest neighbors
finding for all the n features.

- Oðnðmk2 þ k3ÞÞ is used to calculate LFj according
to (17) for all the n features.

. Calculate the r smallest eigenvectors of L.

- There are almost mk2 and nk2 nonzero elements
in LS and LF , respectively. In practise, the data
matrix X is usually very sparse, so the ðmþ
nÞ � ðmþ nÞ dimensional matrix L is sparse too.
As a result, the Lanczos algorithm [37] can be
used to efficiently compute the first r eigenvec-
tors within Oðqrðmþ nÞsÞ, where q is number of
iterations in Lanczos, and s is the number of
nonzero elements per row of L.

The total cost for LDCC is Oððmnþ qrsÞðmþ nÞ þ
m2 logmþ n2 lognþ ðmnþmkþ nkÞk2Þ.

The main memory cost of LDCC is to store the pairwise
distance matrices and the sparse matrix L. Thus, the
memory complexity is Oðm2 þ n2 þ sðmþ nÞÞ.

4 EXPERIMENTS

In this section, we perform text and gene expression
clustering (coclustering) experiments to show the effective-
ness of LDCC.

4.1 Experimental Design

We compare our method with the following five methods:

1. Kmeans on the original data matrix (Kmeans) [4].
2. Normalized cut [22].
3. Bipartite spectral graph partitioning [7], [8].
4. Information-theoretic coclustering [16].1

5. Dual regularized coclustering (DRCC) [28].

In the above methods, Kmeans and NCut are one-sided
clustering algorithms, while BGP, ITCC, DRCC, and LDCC
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are coclustering algorithms. Note that the procedures for

solving Kmeans and ITCC can only find the local optimum.

In the experiments, we ran both Kmeans and ITCC 10 times

with different random starting points and the best result in

terms of their objective functions was recorded.

4.1.1 Evaluation Metric

In practice, the ground truth about the feature clusters is
usually unknown. Thus, we evaluate the result of sample
clustering in our experiments. The sample clustering
performance is evaluated by comparing the label obtained
from the clustering or coclustering algorithms with that
provided by the data set. Two metrics, the accuracy (AC)
and the normalized mutual information (MI), are used to
measure the clustering performance [2], [38]. Given a
sample xi, let pi and qi be the obtained cluster label and
the label provided by the data set, respectively. The AC is
defined as follows:

AC ¼
Pm

i¼1 �ðqi;mapðpiÞÞ
m

; ð23Þ

where m is the total number of documents, �ðx; yÞ is the

delta function that equals one if x ¼ y and equals zero

otherwise, and map(pi) is the permutation mapping

function that map each cluster label pi to the equivalent

label from the data corpus. The best mapping can be found

by using the Kuhn-Munkres algorithm [39].
Let C denote the set of clusters provided by the data set

and C0 obtained from our algorithm. Their mutual informa-

tion metric MIðC;C0Þ is defined as following:

MIðC;C0Þ ¼
X

ci2C; c0j2C0
pðci; c0jÞ: log2

pðci; c0jÞ
pðciÞ:pðc0jÞ

; ð24Þ

where pðciÞ and pðc0jÞ are the probabilities that a sample

arbitrarily selected from the data set belongs to the clusters

ci and c0j, respectively, and pðci; c0jÞ is the joint probability

that the arbitrarily selected sample belongs to the cluster ci
as well as c0j at the same time. In our experiments, we use

the normalized mutual information MI as follows:

MI ¼ MIðC;C0Þ
maxðHðCÞ; HðC0ÞÞ ; ð25Þ

where HðCÞ and HðC0Þ are the entropies of C and C0,

respectively. It is easy to check that MI takes values

between 0 and 1.

4.1.2 Parameter Settings

There are several parameters to be tuned in each clustering or

coclustering algorithm considered in our experiments. In

order to compare these algorithms fairly, we run them under

different parameter settings, and report the best result.
In Kmeans and Ncut, the number of sample clusters is

set to the true number of classes for all the data sets. In BGP,

ITCC, DRCC, and LDCC, the number of sample clusters

and feature clusters are both set to the true number of

classes for all the data sets.

In Ncut [22], the similarity between two samples xi and

xj is computed with Heat kernel: wij ¼ expð� kxi�xjk2

t Þ. The

parameter t is searched from the grid: f1e�2; 1e�1; 1,

1e1; 1e2g.
In DRCC, two k-nearest neighbor graphs are constructed

to encode the manifold structure in the data space and
feature space. As in [28], the neighborhood size of the
sample graph is set to be the same as that of the feature
graph. k is searched from the grid: f1; 2; . . . ; 10g. The two
regularization parameters in DRCC are set to be the same,
and searched from the grid: f1e�2; 1e�1; 1, 1e1; 1e2g.

In LDCC, the regularization parameter � for local linear
regression is set to 1, and the dimensionality r is searched
from the grid: f5; 10; . . . ; 50g. The other parameter settings
of LDCC are the same as DRCC.

4.2 Data Sets

Three text corpora and two gene expression data sets are
used in our experiments.

20 Newsgroups.2 The 20 Newsgroups corpus is a
collection of approximately 20,000 newsgroup documents,
partitioned (nearly) evenly across 20 different news-
groups. On this data set, we select 2,000 words with the
largest contribution to the mutual information between the
words and the documents [14], and then remove the
empty documents.

WebKB.3 The WebKB corpus contains web pages
collected from computer science departments of various
universities in January 1997. The 8,282 pages were manually
classified into the following seven categories: student,
faculty, staff, department, course, project, and other. We
select the top 1,000 words by mutual information for this
data set.

TechTC-100.4 The Technion Repository of Text Categor-
ization Data sets (TechTC) provides a large number of
diverse test collections for use in text categorization research.
We use the TechTC-100 corpus, which contains 100 binary
text data sets. Each data set in TechTC-100 consists of a total
of 150 to 200 documents from two Open Directory Project
(ODP) categories. In our experiments, we select the top
2,000 words by mutual information for each data set.

Leukemia.5 Leukemia data set is a benchmark in gene
expression analysis [40]. It contains 72 samples and
7,129 genes. Each sample belongs to either Acute Lympho-
blastic Leukemia (ALL) or Acute Myeloid Leukemia (AML).
We use the subset provided by Brunet et al. [41], which
consists of 38 bone marrow samples (27 ALL samples and
11 AML samples). We screen out genes with max=min < 15
and max�min < 500, leaving a total of 1,999 genes.

Medulloblastoma.6 This gene expression data set [42] is
collected from childhood brain tumors known as medullo-
blastomas. The pathogenesis of these tumors is not well
understood, but it is generally accepted that there are two
known histological subclasses: classic and desmoplastic. We
use the subset provided by Brunet et al. [41], which consists
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of 25 classic samples and 9 desmoplastic samples. We

screen out genes with max=min < 15 and max�min < 500,

leaving a total of 1,710 genes.

4.3 Experimental Results

4.3.1 Performance on Balanced Data Sets

In this section, we compare the performance of different

algorithms on balanced data sets, where all the sample

classes have the same size.
The first experiment is done on the 20 Newsgroups

corpus. The evaluations were conducted with different

number of document classes c, ranging from 2 to 10. At each

run of the test, c document classes are randomly selected

from the whole corpus and 300 documents are randomly

selected from each selected class. For each given class

number c, 10 test runs are conducted, and the average

performance is computed over these 10 tests. Table 1 shows

the average clustering performance, as well as the standard

deviation, for each algorithm. As can be seen, our LDCC

algorithm significantly outperforms the other clustering or
coclustering algorithms in all the cases.

Although the WebKB corpus is unbalanced, we gen-
erate balanced subsets by choosing the same number of
documents from each document class. We perform
clustering or coclustering experiments with c ¼ 2; . . . ; 7
document classes. At each run of the test, c document
classes are randomly selected and 100 documents are
randomly selected from each selected class. As before,
10 test runs are conducted for each c and the average
performance is reported. The clustering results on the
balanced WebKB data set are shown in Table 2. On this
data set, LDCC still performs the best in most cases.
Compared with the results on the 20 Newsgroup corpus,
the advantage of LDCC is less obvious on this corpus.
That is probably because the WebKB corpus is more
difficult to be clustered.

From Tables 1 and 2, we can see that in general the
accuracy keeps decreasing as the number of classes c
increases. However, the Normalized Mutual Information
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TABLE 1
Performance Comparisons on the 20 Newsgroups Corpus (mean 	 std-dev)

The best result is in bold.

TABLE 2
Performance Comparisons on the Balanced WebKB Corpus (mean 	 std-dev)

The best result is in bold.



(MI) does not have a clear pattern. The behavior of MI is
quite complex and depends on the specific data set. For
example, in [2], we can see that MI decreases on the TDT2
corpus and increases on the Reuters corpus, when c increases.

The TechTC-100 corpus contains 100 balanced binary
data sets, and we perform clustering or coclustering
experiments on each data set. The performance compar-
isons on the TechTC-100 corpus are shown in Fig. 2,
where we plot the result of LDCC in y-axis and best result
of the other methods in x-axis. Then, the number of points
in the upper triangle is just the number of data sets on
which LDCC performs the best. In terms of accuracy,
LDCC performs the best on 74 sets. And in terms of MI,
LDCC performs the best on 78 sets. From Fig. 2b, we can
see that the MI of many data sets is less than 0.1, which
means this text corpus is very hard to be clustered.
However, our algorithm still performs the best in most
cases on this corpus.

4.3.2 Performance on Unbalanced Data Sets

In the following, we evaluate the performance of all the
methods on unbalanced data sets, where the sizes of sample
classes are highly skewed.

The WebKB corpus is a unbalanced data set, where the
size of the document class ranges from 137 to 3,728. As before,

we perform clustering or coclustering experiments with c ¼
2; . . . ; 7 document classes. At each run of the test, we select c
document classes randomly and then select 10 percent
documents from each selected class. In this way, the
randomly generated subsets are highly unbalanced. Ten test
runs are conducted for each c and the average performance is
reported. The clustering results on the unbalanced WebKB
data set are shown in Table 3. Compared with the results in
Table 2, the performance of all the methods decreases in this
experiments. Thus, the unbalanced data sets are more
difficult to be clustered. Nevertheless, our LDCC still
performs the best on most cases.

Finally, we show the clustering performance on the two
gene expression data sets in Table 4. This two data sets are
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Fig. 2. Performance comparisons on the TechTC-100 corpus. We plot the result of LDCC in y-axis and best result of the other methods in x-axis.

TABLE 3
Performance Comparisons on the Unbalanced WebKB Corpus (mean 	 std-dev)

c

c

The best result is in bold.

TABLE 4
Clustering Performance on the Two Gene Expression Data Sets

The best result is in bold.



rather challenging for coclustering algorithms, since they
contain a small number of samples but large amount of
features. As a result, BGP groups all the samples into the
same cocluster on the Medulloblastoma data set, thus its
MI is 0 on this data set. In contrast, our LDCC is the winner
for most of the cases, which verifies that the intrasample
and interfeature relationships are essential for coclustering.

4.3.3 A Case Study of Feature Clusters

In this section, we provide one case study of feature
clusters. We form one text data set by choosing four classes
(“atheism,” “hardware,” “motorcycles,” and “guns”) from
the 20 Newsgroups corpus.

Table 5 summarizes the results of applying LDCC to this
data set. The top of the table is the confusion matrix, from
which we can see that LDCC is able to recover the original
classes. Since LDCC partitions documents and words
simultaneously, there is one associated word cluster for
each document cluster. We list the words near the center of
each word cluster in the bottom of Table 5. It should be
observed that most of these words are consistent with the
“concept” of the associated document cluster.

4.3.4 Parameter Selection

In LDCC, we apply ridge regression at each local patch to
capturing the intersample (or intersample) relationship,
where � appears as a regularization parameter. Besides,
there is another parameter � which is used to control the
importance of intersample and interfeature relationships. In
the following, we examine the impacts of the two
parameters on the performance of LDCC.

The performance of LDCC under different settings of �
and � is evaluated on the WebKB corpus. The number of
document classes c is set to 4, and other experimental
settings are the same as these in Section 4.3.1. For brevity,
we just show how the accuracy of LDCC varies with the

parameter � and �. Fig. 3 plots the accuracy versus the value
of � with � ¼ f0:1; 1; 10g. As can be seen, the performance of
LDCC is quite stable with respect to � as long as it is smaller
than certain threshold. Comparing the results under
different settings of �, we can see that LDCC is also
insensitive to �.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel coclustering algorithm
named Locally Discriminative Coclustering which explores
sample-feature, intersample, and interfeature relationships
simultaneously. The sample-feature relationship is modeled
by a bipartite graph, while the intersample and interfeature
relationships are captured by local linear regressions. The
results of the coclustering experiment are very promising.

The idea of local learning can be used to extend the
existing coclustering algorithms, such as the information
theory-based [16], [25] and matrix factorization-based
algorithms [17], [18]. And we will investigate this in our
future work. Although clustering is inherently an unsuper-
vised learning problem, sometimes a small set of labeled
samples (features) might be available. Thus, the extension
of LDCC to incorporate prior knowledge is another research
topic. Furthermore, more efficient optimization methods for
LDCC will be considered.
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