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Dimensionality reduction is a commonly used tool in machine learning, especially when dealing with

high dimensional data. We consider semi-supervised graph based dimensionality reduction in this

paper, and a novel dimensionality reduction algorithm called constrained Laplacian Eigenmap (CLE) is

proposed. Suppose the data set contains r classes, and for each class we have some labeled points. CLE

from others by using label information. CLE constrains the solution space of Laplacian Eigenmap only to

contain embedding results that are consistent with the labels. Then, each point is represented as a r-

dimensional vector. Labeled points belonging to the same class are merged together, labeled points

belonging to different classes are separated, and similar points are close to one another. We perform

semi-supervised document clustering using CLE on two standard corpora. Experimental results show

that CLE is very effective.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

In many real life applications, one is often confronted with
high-dimensional data (e.g. documents, images). The infamous
curse of dimensionality states that the performance of most
machine learning algorithms degrades rapidly both in effectivity
and efficiency as the dimensionality increases [15]. Dimension-
ality reduction allows one to represent the data in a lower
dimensional space, and more importantly, reveal the intrinsic
structure of the data [8,45,44,34]. The most popular techniques
include principal component analysis (PCA), non-negative matrix
factorization (NMF), and graph based dimensionality reduction.

Principal component analysis (PCA) [5,31,30] reduces the
dimensionality of the data by finding a few orthogonal linear
projections such that the variance of the projected data is
maximized. In fact, it turns out that these projections are just
the leading eigenvectors of the data’s covariance matrix, which
are called principal components. PCA is globally optimal in the
sense that those projections best preserve the global Euclidean
structure of the data. However, it can only discover linear
manifold embedded in high dimensional space.

Non-negative matrix factorization (NMF) [22,40,23] is a matrix
factorization algorithm that approximates the original non-
negative data matrix by the product of two non-negative matrix.
The first non-negative matrix can be regarded as containing a set
of basis vectors, and the other non-negative matrix contains the
ll rights reserved.
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new coordinate for each point. The non-negative constraints lead
to a parts-based representation because they allow only additive,
not subtractive, combinations. NMF is concerned with minimizing
the data reconstruction error, whereas the local manifold
structure is ignored.

Although the representation of many data is high dimensional,
the process generating the data is usually characterized by
relatively few degrees of freedom. One natural way to formalize
this intuition is to model the data as lying on or near a low
dimensional manifold embedded in the high dimensional space
[3]. In the last decade, a series of graph based dimensionality
algorithms that approximate data manifolds have been proposed,
such as Isomap [37], Locally Linear Embedding (LLE) [32],
Laplacian Eigenmap (LE) [2], and Locality Preserving Projection
(LPP) [18]. A central construction in these algorithms is a neighbor
graph which encodes the geometrical information of the data
space. It has been shown that, all these algorithms can be
interpreted in a general graph embedding framework, and their
differences lie in the strategy to design the graph and the
embedding type [41]. Besides, recently there have been some
interests in tensor based algorithms for dimensionality reduction,
see [17,24,35,36,33,39] for details.

In practice, there is usually some prior knowledge available.
The most widely used prior knowledge includes class labels of
some data points, and pairwise (must-link or cannot-link)
constraints. We focus on the former case in this paper. Most
previous approaches [21,43,16,26,11,7] use soft constraints in
their object functions, so they cannot guarantee that data points
belonging to the same class are actually mapped together. Bie
et al. [4] proposed to use the subspace trick to constrain the
solution space. Two-class dimensionality reduction problems can
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be handled perfectly. For multi-class problems, the algorithm
does map points from the same class into the same point, but
cannot guarantee that data points from different classes are
mapped separately.

In this paper, we proposed a novel dimensionality reduction
algorithm called constrained Laplacian Eigenmap (CLE), which
supports multi-class problems. CLE aims to find the projection
which respects the intrinsic geometrical structure inferred from
all the data points, and also consists with labels. Suppose the data
set contains r classes, and for each class we have some labeled
points. CLE maps each data point into r different lines, and each
map i tries to separate points belonging to class i from others by
using label information. The mapping is performed by constrain-
ing the solution space of Laplacian Eigenmap to consist with
labels. In the resulting r-dimensional space, labeled points
belonging to the same class are merged together, labeled points
belonging to different classes are separated, and similar points are
close to one another.

We perform document clustering using CLE on two standard
corpora: TDT2 and Reuters-21578. Experimental results show
that this clustering model is very effective, and CLE becomes more
competitive as the percentage of labeled documents or the
number of clusters increases.

The paper is organized as follows: in Section 2, we give a brief
review of related works. Our constrained Laplacian Eigenmap
(CLE) algorithm is introduced in Section 3. The experimental
results are presented in Section 4. Finally, we provide some
concluding remarks and suggestions for future work in Section 5.
2. Related works

2.1. Principal component analysis (PCA)

PCA [5,31,30] can be defined in terms of the orthogonal
projections which maximize the variance in the projected space.
Given a set of n-dimensional data points x1; . . . ;xm, we first
consider the projection onto a one-dimensional space using a n-
dimensional vector u. Then, we have the following optimization
problem:

uopt ¼ argmax
u

uT Su ð1Þ

with the constraint

uT u¼ 1

where S is the data covariance matrix defined by

S¼
1

m

Xm

i ¼ 1

ðxi-xÞðxi-xÞT ð2Þ

It can be proved that uopt equals to the eigenvector of S that
having the largest eigenvalue l1. This eigenvector is called as the
first principal component. If we consider the general case of a
r-dimensional projection space, the optimal linear projections for
which the variance of the projected data is maximized are just the
r leading eigenvectors u1; . . . ;ur of S.

PCA is closely related to latent semantic indexing (LSI) [14]
which projects documents onto a lower dimensional space
through singular value decomposition (SVD).

2.2. Non-negative matrix factorization (NMF)

NMF [22,40,23] aims to find the non-negative factorization of
the original data matrix. Given a set of non-negative n-dimen-
sional data points x1; . . . ;xm, they can be represented as a n�m

data matrix X ¼ ½x1; . . . ;xm�. In order to reduce the dimensionality,
NMF finds two non-negative matrix W and H such that:

X �WH ð3Þ

where W is a n� r non-negative matrix, and H is a r �m non-
negative matrix. Usually r is chosen to be smaller than n or m, so
that W and H are smaller than the X.

Let H¼ ½h1; . . . ;hm�. NMF can be rewritten column by column
as

xi �Whi; i¼ 1; . . . ;m ð4Þ

So, W can be regarded as containing a set of basis vectors, and
each column of H is called an encoding and is in one-to-one
correspondence with a data point in X. hi can be used as the new
coordinate of point xi. There are many iterative algorithms to
calculate W and H [25,23]. Recently, some work has been
developed to incorporate manifold structure into NMF [10,42].
2.3. Laplacian Eigenmap (LE)

LE [2] is a typical graph based dimensionality reduction
technique. It constructs a nearest neighbor graph to capture local
structure in the data. Vertices in the graph correspond to points in
the data, and the edges denote neighborhood relationships
between them. The non-negatives weights of edges represent
the similarity between neighbor points. Given the similarity
matrix W, LE compute eigenvalues and eigenvectors for the
generalized eigenvector problem:

Ly¼ lDy ð5Þ

where D is the diagonal weight matrix with Dii ¼
P

jWji, and
L¼D-W is the graph Laplacian [12]. Let y1; . . . ; yr be first r smallest
eigenvectors of Eq. (5). The new coordinate of point i is given by
the i-th row of Y ¼ ½y1; . . . ;yr �. LE tries to map similar points as
closely as possible. The objective function of LE is

Yopt ¼ argmin
Y

X
i;j

JYi-YjJ
2Wij ¼ trðYT LYÞ ð6Þ

with the constraint

YT DY ¼ I

2.4. Semi-supervised (supervised) graph embedding

If we have some data points labeled, the most natural way to
make use of label information is to modify the edge weights of the
graph [21,43]. If two points belong to the same class, then the
edge weight is increased. If two points belong to different class,
then the edge weight is decreased. We can incorporate label
information into Laplacian Eigenmap as follows. Firstly, we
modify the edge weights according to the label information. Then
we obtain a new similarity matrix Snew, a new diagonal weight
matrix Dnew, and a new graph Laplacian Lnew. Secondly, we
calculate eigenvectors of Lnewy¼ lDnewy to reduce the dimension.
We call this algorithm semi-supervised Laplacian Eigenmap
(Semi-LE).

Other typical semi-supervised (supervised) graph based algo-
rithms include maximum margin projection (MMP) [16], aug-
mented relation embedding (ARE) [26], and local discriminant
embedding (LDE) [11]. The major disadvantage of these
approaches is that they cannot guarantee that data points
belonging to the same class are actually mapped together.
Besides, the subspace trick proposed by Bie et al. can only handle
two-class problems.
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2.5. Constrained spectral clustering (CSC)

CSC is one closely related topic, since most clustering
algorithms perform dimensionality reduction before clustering.
We discuss two typical algorithms as follows.

Coleman et al. [13] have proposed one constrained spectral
clustering algorithm, which supports must-link and cannot-link
advices. Different from pervious methods, the proposed algorithm
can handle inconsistent advices. However, their algorithm can
only be applied to two-class clustering problems. Ji et al. [20] have
proposed a document clustering model that enables the user to
provide must-link constraints. Specifically, they introduce a
constraint matrix U to encode user’s prior knowledge. A penalty
term that depends on UT U is added to the objective function of
spectral clustering. It is easy to check that UT U is just the graph

Laplacian of one graph constructed by adding an edge between
any two must-link points. So, this algorithm is essentially
equivalent to the semi-supervised graph embedding algorithm
that increases the weight of the edge between any two must-link
points.
3. Constrained Laplacian Eigenmap
Definition 1. The semi-supervised dimensionality reduction
problem considered in this paper is defined as:
1.
 Input: a set of n-dimensional data points x1; . . . ;xm that belong
to r classes, and for each class i, there are mi points labeled.
2.
 Output: the projection that respects the intrinsic geometrical
structure inferred from all the data points and also consists
with labels.

Denote class i as ci, and the set of labeled points belonging to ci

as li.

3.1. Motivation

We can translate one multi-class dimensionality reduction
problem into a set of two-class problems. This idea can be
justified by considering the indicator matrix. MAf0;1gm�r is an
indicator matrix if Mij ¼ 1 iff xiAcj. Checking columns of M

individually, we can see that the i-th column of M can only
separate points belonging to ci from others, so it can be seen as
the embedding result of a two-class dimensionality reduction
problem. However, by combining r such vectors to form M, it is
sufficient to solve r-class problems, no matter r is 2 or greater.

Based on the above discussion, we propose a novel semi-
supervised dimensionality reduction algorithm called constrained
Laplacian Eigenmap (CLE). If the data set contains r classes, CLE
maps each data point into r different lines, and each map i tries to
separate points belonging to ci from others by using the label
information. The mapping is performed based on Laplacian
Eigenmap, whose solution space is constrained by modifying the

similarity matrix and using the subspace trick. Putting the result of
each map as a column, we can form a matrix YARm�r , where the
i-th row gives the embedding coordinate of the i-th point.

3.2. Constraining the solution space of LE

Suppose we are going to map each point into the k-th line. The
data set is treated as containing two classes: ck and ck . Then, this
map is required to separate points belonging to ck from others by
using the label information. We use two steps to constrain the
solution space of Laplacian Eigenmap. Firstly, we incorporate label
information into the graph structure by modifying the similarity
matrix. Since we are facing a two-class dimensionality reduction
problem, the subspace trick is used later.

3.2.1. Modifying the similarity matrix

Since the data set is treated as containing two classes, we
modify the similarity matrix W to make it more consist with this
assumption. Assume the maximum similarity is 1. W is modified
as follows:
1.
 8i; j, if xi;xjA lk, set Wij ¼ 1.

2.
 8i; j, if xiA la;xjA lb; aak, and bak, set Wij ¼ 1.

3.
 8i; j, if xiA lk;xjA la, and aak, set Wij ¼Wji ¼ 0.
After modification, within class (ck or ck ) links become tighter,
and between class (ck and ck ) links become looser. Unlike previous
algorithm [21], the modification here is different for different
map. Let Wk be the similarity matrix after modification, Dk be the
corresponding diagonal matrix, and Lk be the corresponding
Laplacian matrix.

3.2.2. Using the subspace trick

Ideally, we want to map all the points belonging to the same
class (ck or ck ) into a single point. Since we only have a few labeled
points for each class, the best we can do is to represent labeled
points belonging to ck by one 1-dimensional vector, represent
other labeled points by another vector, and map similar points as
closely as possible. Let y¼ ½y1; . . . ; ym�

T be the result of k-th map.
We have the following objective function:

yopt ¼ argmin
y

X
i;j

ðyi-yjÞ
2
ðWkÞij ¼ argmin

y
yT Lky ð7Þ

with constraints

yi ¼ yj if xi;xjA lk
yi ¼ yj if xiA la;xjA lb; aak; and bak

yiayj if xiA lk;xjA la and aak

yT Dky¼ 1

8>>>><
>>>>:

Without loss of generality, assume the first m1 points d1; . . . dm1

are labeled points belonging to c1, the next m2 points
dm1þ1; . . . ; dm1þm2

are labeled points belonging to c2, and so on.
All the rest points are unlabeled. In order to meet the above
constraint, we introduce the label constraint matrix
PkAf0;71gm�ð2þm-pÞ, where p¼m1þ � � � þmr . Each row i of Pk

corresponds to point xi, and the matrix is represented as follows:

Pk ¼

1m1
-1m1

0m1�ðm-pÞ

^ ^ ^

1mk-1
-1mk-1

0mk-1�ðm-pÞ

1mk
1mk

0mk�ðm-pÞ

1mkþ 1
-1mkþ 1

0mkþ 1�ðm-pÞ

^ ^ ^

1mr -1mr 0mr�ðm-pÞ

1ðm-pÞ 0ðm-pÞ Iðm-pÞ�ðm-pÞ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

Using the label constraint matrix Pk, we can map labeled points
into two different points by introducing an auxiliary vector z and
equating:

y¼ Pkz

Substituting it into Eq. (7), we obtain the following optimization
problem:

zopt ¼ argmin
z

zT PT
k LkPkz ð8Þ
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with the constraint

zT PT
k DkPkz¼ 1

Note that three constraints of Eq. (7) are dropped. They are
automatically guaranteed by equation y¼ Pkz, which we will
explain later. By the Rayleigh–Ritz theorem [28], we know the
solution of this problem is the smallest eigenvector of the
following generalized eigenvector problem:

PT
k LkPkz¼ lPT

k DkPkz ð9Þ

Let z0 be the smallest eigenvalue of Eq. (9). We have the following
proposition:

Proposition 1. The smallest eigenvalue z0 is 0 with eigenvector

½1;0; . . . ;0�T , and the corresponding y is the constant vector 1.

Proof. It is easy to check that Lk is positive semi-definite and Dk is
positive definite. Since the column vectors of Pk are independent,
for any non-zero z, Pkz is not a zero vector. Therefore, PT

k LkPk is
still positive semi-definite and PT

k DkPk is positive definite. This
implies that lZ0. Actually, the smallest eigenvalue is 0 with
eigenvector ½1;0; . . . ;0�T , since

PT
k LkPk½1;0; . . . ;0�

T ¼ PT
k Lk1¼ PT

k 0¼ 0

The corresponding y¼ Pk½1;0; . . . ;0�
T ¼ 1. &

Vector 1 is useless, since all the data points have the same
representations. So we choose the second smallest eigenvector z1.
Let z1 ¼ ½z

1
1; z

1
2; . . . ; z

1
2þm-p�

T , it is easy to check that

y¼ ðz1
1-z1

2Þ; . . . ; ðz
1
1-z1

2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}n1þ���þnk-1

; ðz1
1þz1

2Þ; . . . ; ðz
1
1þz1

2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}nk

;

"

ðz1
1-z1

2Þ; . . . ; ðz
1
1-z1

2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}nkþ 1þ���þnr

; ðz1
1þz1

3Þ; . . . ; ðz
1
1þz1

2þm-pÞ�
T

So labeled points belongs to ck are represented by z1
1þz1

2, and
other labeled points are represented by z1

1-z1
2. Since points

belonging to same class are usually similar to one another, then
in theory unlabeled points belonging to ck will be mapped around
z1

1þz1
2, and other unlabeled points will be mapped around z1

1-z1
2.

3.3. The algorithm

Given a set of data points x1; . . . ;xmARn belonging to r classes
and some labeled points for each class, CLE projects each points
onto a r-dimensional discriminative space. It is performed as
follows:
1.
 Constructing the adjacency graph. Let G denote a graph with m

nodes, and the i-th node corresponds to the point xi. There are
two variations [2]:
(1) e- neighborhoods [parameter eAR]: Nodes i and j are

connected by an edge if Jxi-xjJ
2oe where the norm is the

usual Euclidean norm in Rn.
(2) k nearest neighbors [parameter kAN]: Nodes i and j are

connected by an edge if xi is among k nearest neighbors of
xj or xj is among k nearest neighbors of xi.
�

1

Choosing the weights. There are many kinds of weighting
methods [6]:
(1) 0-1 weighting,
(2) Gaussian kernel weighting,
(3) dot-product weighting, and
(4) polynomial kernel weighting.
Nist Topic Detection and Tracking corpus is at http://www.nist.gov/speech/

tests/tdt/1998/

3.
2 Reuters-21578 corpus is at http://www.daviddlewis.com/resources/testcol

lections/reuters21578/
Mapping each data point into r different lines. Each map i tries to
separate points belonging to ci from others by using the label
information.
Suppose we are going to map each point into the k-th line. We
use the following two steps to constrain the solution space of
Laplacian Eigenmap (Section 3.2).
(1) Modifying the similarity matrix:

If both of two labeled points belong to ck, the edge weight
is increased. If neither of two labeled points belong to ck,
the edge weight is also increased. If one labeled point
belongs to ck, and the other labeled point does not, the
edge weight is decreased.

(2) Using the subspace trick:
Firstly, we construct the label constraint matrix Pk for the
k-th map. Secondly, we calculate the second smallest
eigenvector z1 of the generalized eigenvector problem (9).
Then, y¼ Pkz1 gives the result of the k-th map.
4.
 Combining the result of each mapping. Denote the results of all
the r maps as y1; . . . ; yr . The embedding coordinate of point xi

is given by the i-th row of Y ¼ ½y1; . . . ;yr�.

After CLE, we get r-dimensional representations of the original
data points. It is easy to check that labeled points belonging to the
same class are merged together, labeled points belonging to
different classes are separated, and similar points are close to one
another. So, in this space, better classification or clustering
performance can be obtained.
4. Experimental result

In this section, we perform document clustering using CLE to
show the effectiveness of our algorithm. Document clustering has
received a lot of attention as a fundamental tool for organization,
summarization and retrieval of large volumes of text documents.
Two standard document collections were used in the experi-
ments: TDT2 and Reuters-21578.

4.1. Data corpora

We used the TDT2 and Reuters-21578 corpora as [6]. The TDT2
corpus1 consists of documents collected from six sources (APW,
NYT, VOA, PRI, CNN, and ABC) during 1998. It consists of 11,201
documents and 96 categories. In our experiments, we removed
those documents belonging to two or more categories and used
the largest 30 categories. This led to a data set with 9394
documents in 30 categories as described in Table 1. In this table,
CluID means cluster’s ID and DocNum means number of
documents contained in the cluster.

Reuters-21578 corpus2 contains 21,578 documents in 135
categories. In our experiments, we excluded those documents
with multiple labels, and chose the largest 30 categories. It left us
with 8067 documents in 30 categories as described in Table 2.

We removed the stop words, and represented each document
as a term-frequency vector. Each document vector is normalized
to unit length.

4.2. Evaluation metric

The clustering performance is evaluated by comparing the
label obtained from our clustering algorithm with that provided
by the document corpus. Two metrics, the accuracy (AC) and the
normalized mutual information metric ðMIÞ, are used to measure
the clustering performance [40,6]. Given a document di, let pi and

http://www.nist.gov/speech/tests/tdt/1998/
http://www.nist.gov/speech/tests/tdt/1998/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Table 2
Reuters-21578 used in our experiments.

CluID DocNum CluID DocNum CluID DocNum

c1 3713 c11 87 c21 37

c2 2055 c12 63 c22 36

c3 321 c13 60 c23 33

c4 298 c14 53 c24 30

c5 245 c15 45 c25 27

c6 197 c16 45 c26 24

c7 142 c17 44 c27 23

c8 114 c18 42 c28 20

c9 110 c19 38 c29 19

c10 90 c20 38 c30 18

Table 1
TDT2 used in our experiments.

CluID DocNum CluID DocNum CluID DocNum

c1 1844 c11 160 c21 76

c2 1828 c12 145 c22 74

c3 1222 c13 141 c23 72

c4 811 c14 140 c24 71

c5 441 c15 131 c25 66

c6 407 c16 123 c26 65

c7 272 c17 123 c27 63

c8 238 c18 120 c28 58

c9 226 c19 104 c29 56

c10 167 c20 98 c30 52
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qi be the obtained cluster label and the label provided by the
corpus, respectively. The AC is defined as follows:

AC ¼

Pm
i ¼ 1 dðqi;mapðpiÞÞ

m
ð10Þ

where m is the total number of documents, dðx; yÞ is the delta
function that equals one if x¼ y and equals zero otherwise, and
mapðpiÞ is the permutation mapping function that map each cluster
label pi to the equivalent label from the data corpus. The best
mapping can be found by using the Kuhn–Munkres algorithm [27].

Let C denote the set of clusters provided by the document
corpus and C0 obtained from our algorithm. Their mutual
information metric MIðC;C0Þ is defined as following:

MIðC;C0Þ ¼
X

ci AC;cj
0 AC0

pðci; cj
0 Þ � log2

pðci; cj
0 Þ

pðciÞ � pðcj
0 Þ
; ð11Þ

where pðciÞ and pðcj
0 Þ are the probabilities that a document

arbitrarily selected from the corpus belongs to the clusters ci and
cj
0 , respectively, and pðci; cj

0 Þ is the joint probability that the
arbitrarily selected document belongs to the clusters ci as well as
cj
0 at the same time. In our experiments, we use the normalized

mutual information MI as follows:

MI ¼
MIðC;C0Þ

maxðHðCÞ;HðC0ÞÞ
ð12Þ

where HðCÞ and HðC0Þ are the entropies of C and C0, respectively. It
is easy to check that MI takes values between 0 and 1.

4.3. Clustering results

To demonstrate how our method improves the performance of
document clustering, we compared it with the following five
methods:
1.
 k-means on original term-document matrix (k-means),

2.
 clustering based on Non-negative Matrix Factorization (NMF-

NCW, [40]),
3.
 k-means after LSI (LSI),

4.
 k-means after Laplacian Eigenmaps (LE),

5.
 k-means after semi-Laplacian Eigenmap (Semi-LE).
Since k-means algorithm can only find local minimum, and is
sensitive to initial points. When we need to perform k-means, we
apply it 10 times with different start points and the best result in
terms of the objective function of k-means was recorded.

The weighted non-negative matrix factorization based docu-
ment clustering algorithm (NMF-NCW, [40]) is a recently
proposed algorithm. NMF-NCW weights each documents before
performing NMF, which has shown to be very effective in
document clustering. We use the projected gradient algorithm
for NMF proposed by Lin [25]. For the same reason as k-means,
when performing NMF, we apply it 10 times with different initial
value and the best result in terms of the objective function of NMF
was recorded.

Latent semantic indexing (LSI) [14] is one of the most popular
linear document indexing methods. LSI is similar with PCA. The
covariance matrix of data in PCA corresponds now to the
document-term matrix multiplied by its transpose.

Note that LE, Semi-LE, and CLE need to use the similarity
matrix. In the following experiments, we used the 15 nearest
neighbors approach to construct the graph, and choose the dot-
product weighting method. If nodes i and j are connected,
Wij ¼Wji ¼ dT

i dj. Otherwise, Wij ¼Wji ¼ 0. Since each document
vector di is normalized to have unit length, so 0rWijr1.

For the Semi-LE, we change the similarity matrix as follows. If
two labeled documents belong to the same cluster, then the edge
weight is set to 1. If two labeled documents belong to different
cluster, then the edge weight is set to 0.

In spectral clustering, the dimensions of the subspace are set to
the number of clusters [29]. So, given a cluster number r, we use
LE and Semi-LE to map documents into r-dimensional subspace
by choosing the first r smallest eigenvector of Eq. (5). For
comparison, LSI embeds the documents into a r-dimensional
subspace by using the first r largest left singular vector. CLE also
maps documents into r-dimensional discriminative space.

The evaluations were conducted with different number of
clusters, ranging from 2 to 6. For each given cluster number r, 20
tests were generated by choosing different clusters randomly. For
each test, different percentage documents were labeled for each
cluster. For each given percentage e, 10 different cases were
generated randomly. The results for k-means, LSI, NMF-NCW, and
LE were averaged over these 20 tests. Given a percentage e of
labeled documents, the results for Semi-LE and CLE were firstly
averaged over 10 cases, then averaged over 20 tests. As we can see
from Tables 1 and 2, there are 32 document clusters containing
less than 100 documents. So in experiments we set percentage e

to range from 3% to 10%.
Table 3 shows the experimental results on the TDT2 corpus. As

can be seen, LE outperforms k-means, LSI, and NMF-NCW on every
cluster number r. The performance of LSI is even worse than
k-means on the original document space. The optimal dimension
of LSI with r clusters is much higher than r, which has been
discussed in [6]. When the percentage of labeled documents is 3%
or more, CLE outperforms both LE and Semi-LE on average.
Because LE has achieved very good performance—average AC is
above 0.99 and average MI is above 0.95, label information is not
very valuable on this corpus. The improvements of both Semi-LE
and CLE compared with LE are not very obvious.

Table 4 shows the experimental results on the Reuters corpus.
On this corpus, LE outperforms k-means and LSI on every cluster
number r, and outperforms NMF-NCW on average. The
performance of LSI is worse than k-means on the original
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Table 3
Performance comparison on TDT2 corpus.

l Accuracy

k-Means LSI NMF-NCW LE 3% 5% 7% 9%

Semi-LE CLE Semi-LE CLE Semi-LE CLE Semi-LE CLE

2 0.9328 0.9092 0.9827 0.9987 0.9987 0.9987 0.9988 0.9988 0.9988 0.9989 0.9989 0.9989

3 0.8953 0.8546 0.9379 0.9956 0.9957 0.9964 0.9958 0.9963 0.9962 0.9966 0.9959 0.9961

4 0.8547 0.7580 0.9268 0.9910 0.9951 0.9948 0.9951 0.9945 0.9955 0.9935 0.9959 0.9948

5 0.8392 0.7686 0.9229 0.9907 0.9841 0.9885 0.9874 0.9911 0.9887 0.9913 0.9890 0.9911

6 0.8303 0.7538 0.9407 0.9764 0.9786 0.9782 0.9768 0.9807 0.9804 0.9824 0.9749 0.9827

Ave. 0.8704 0.8088 0.9422 0.9905 0.9904 0.9913 0.9908 0.9923 0.9919 0.9925 0.9909 0.9927

Mutual information

2 0.8487 0.7645 0.9451 0.9765 0.9771 0.9777 0.9780 0.9788 0.9785 0.9792 0.9796 0.9809

3 0.7980 0.7388 0.8695 0.9626 0.9638 0.9683 0.9649 0.9684 0.9677 0.9702 0.9660 0.9675

4 0.7809 0.6853 0.8819 0.9542 0.9695 0.9682 0.9704 0.9684 0.9713 0.9673 0.9731 0.9696

5 0.7803 0.7040 0.8777 0.9563 0.9496 0.9552 0.9569 0.9614 0.9584 0.9621 0.9599 0.9628

6 0.8008 0.7137 0.8937 0.9379 0.9402 0.9427 0.9423 0.9493 0.9451 0.9513 0.9403 0.9528

Ave. 0.8018 0.7213 0.8936 0.9575 0.9600 0.9624 0.9625 0.9652 0.9642 0.9660 0.9638 0.9667

Table 4
Performance comparison on Reuters corpus.

l Accuracy

k-Means LSI NMF-NCW LE 3% 5% 7% 9%

Semi-LE CLE Semi-LE CLE Semi-LE CLE Semi-LE CLE

2 0.7486 0.7348 0.8689 0.8644 0.8872 0.9016 0.9007 0.9056 0.9051 0.9141 0.9127 0.9302

3 0.6434 0.6297 0.7247 0.7996 0.7996 0.8024 0.8173 0.8272 0.8293 0.8447 0.8456 0.8595

4 0.6896 0.6609 0.7635 0.7394 0.7492 0.7552 0.7706 0.7648 0.7849 0.7838 0.8013 0.8143

5 0.5328 0.5151 0.6539 0.7203 0.7495 0.7493 0.7697 0.7763 0.7912 0.7982 0.7985 0.8297

6 0.4921 0.4603 0.6029 0.6340 0.6493 0.6568 0.6665 0.7024 0.6941 0.7142 0.7232 0.7477

Ave. 0.6213 0.6002 0.7228 0.7515 0.7669 0.7731 0.7850 0.7952 0.8009 0.8110 0.8163 0.8363

Mutual information

2 0.3095 0.2728 0.5242 0.5240 0.5581 0.5865 0.5920 0.6023 0.5962 0.6143 0.6192 0.6613

3 0.3867 0.3528 0.4266 0.5381 0.5397 0.5413 0.5643 0.5748 0.5859 0.6127 0.6087 0.6258

4 0.4691 0.4485 0.5119 0.5102 0.5094 0.5045 0.5229 0.5257 0.5343 0.5482 0.5529 0.5841

5 0.3726 0.3485 0.4225 0.5042 0.5171 0.5116 0.5395 0.5523 0.5573 0.5767 0.5627 0.6254

6 0.3679 0.3365 0.4107 0.4498 0.4636 0.4618 0.4785 0.5087 0.4993 0.5267 0.5152 0.5576

Ave. 0.3811 0.3518 0.4592 0.5053 0.5176 0.5211 0.5395 0.5528 0.5546 0.5757 0.5718 0.6108
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document space again. Similarly, when the percentage of labeled
documents is 3% or more, CLE outperforms both LE and Semi-LE
on average. But this time the improvement is much more obvious.
With 9% labeled documents, the average AC of CLE is about 2%
point higher than that of Semi-LE and 8.5% point higher than LE;
the average MI is about 4% point higher than of Semi-LE and 10.5%
point higher than of LE.

Fig. 1 shows the accuracy of the six algorithms with different
percentages of labeled documents and different cluster number
on Reuters corpus. Apparently, the performance of Semi-LE and
CLE becomes better as the percentage of labeled documents
increases. More important, the improvement of CLE compared
with Semi-LE becomes more obvious as the percentage of labeled
documents e or the number of clusters r increases.
5. Conclusion and future work

In this paper, we propose a novel semi-supervised dimensionality
reduction algorithm called constrained Laplacian Eigenmap (CLE).
CLE aims to find the projection which respects the intrinsic
geometrical structure inferred from all the data points, and also
consists with labels. Document clustering experiments on TDT2 and
Reuters-21578 corpora have shown that: when the label informa-
tion is not scarce, CLE performs much better than the Semi-LE which
incorporates label information through modifying the similarity
matrix, and other unsupervised methods (k-means, LSI, NMF, LE).
The advantage of CLE becomes more obvious as the percentage of
labeled documents or the number of clusters increases.

Dimensionality reduction is widely used in face recognition.
Eigenface [38], Fisherface [1], and Laplacianface [19,9] are three
state-of-the-art face recognition techniques based on principal
component analysis (PCA), linear discriminant analysis (LDA) and
locality preserving projection (LPP), respectively. Compared with
PCA and LDA, CLE can discover nonlinear manifolds. LPP seeks to
preserve the intrinsic geometry of the data, but it is unsupervised.
Previous studies have shown that face images are possibly reside
on a nonlinear submanifold. Thus, CLE is very suitable for semi-
supervised face recognition, which will be investigated in our
future work.
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Fig. 1. Accuracy of the six algorithms on Reuters corpus. (a) The accuracy with cluster number 2; (b) the accuracy with cluster number 5; (c) the accuracy with cluster

number 6; (d) the average accuracy.
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