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 A B S T R A C T

Online continual learning (OCL), which enables AI systems to adaptively learn from non-stationary data 
streams, is commonly achieved using experience replay (ER)-based methods that retain knowledge by replaying 
stored past during training. However, these methods face challenges of prediction bias, stemming from 
deviations in parameter update directions during task transitions. This paper identifies parameter variation 
imbalance as a critical factor contributing to prediction bias in ER-based OCL. Specifically, using the proposed 
parameter variation evaluation method, we highlight two types of imbalance: correlation-induced imbalance, 
where certain parameters are disproportionately updated across tasks, and layer-wise imbalance, where output 
layer parameters update faster than those in preceding layers. To mitigate the above imbalances, we propose 
the Parameter Variation Balancing Framework (PVBF), which incorporates: (1) a novel method to compute 
parameter correlations with previous tasks based on parameter variations, (2) an encourage-and-consolidate 
(E&C) method utilizing parameter correlations to perform gradient adjustments across all parameters during 
training, (3) a dual-layer copy weights with reinit (D-CWR) strategy to slowly update output layer parameters 
for frequently occurring sample categories. Experiments on short and long task sequences demonstrate that 
PVBF significantly reduces prediction bias and improves OCL performance, achieving up to 47% higher 
accuracy compared to existing ER-based methods.
1. Introduction

Learning constitutes the cornerstone of intelligent systems, enabling 
their adaptation to dynamic environments. Humans exemplify this 
adaptability through their ability to continuously acquire and inte-
grate new knowledge while retaining prior experiences (Wang, Zhang, 
Su, & Zhu, 2024). In contrast, artificial intelligence systems, particu-
larly those based on deep neural networks (DNNs), face a significant 
limitation known as catastrophic forgetting, where the acquisition of 
new information leads to the erosion of previously learned knowl-
edge (Van de Ven & Tolias, 2019), thereby hindering their capacity 
for sequential learning. To mitigate catastrophic forgetting and en-
able human-like learning capabilities, continual learning (CL) methods 
have been extensively studied (Chaudhry, Dokania, Ajanthan, & Torr, 
2018; Kirkpatrick et al., 2017; Li & Hoiem, 2017). Due to privacy 
concerns or resource constraints (Mai et al., 2022), training data in 
more realistic online environments is presented as dynamic, one-pass 
streaming data (Soutif-Cormerais et al., 2023; Wang et al., 2024). 
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Thus, CL models need to not only address catastrophic forgetting but 
also tackle the challenge of insufficient training, which can lead to 
prediction bias. Existing effective methods primarily employ strategies 
such as replaying past samples or representations, commonly referred 
to as experience replay (ER)-based methods (Chaudhry et al., 2019; 
Isele & Cosgun, 2018; Pellegrini, Graffieti, Lomonaco, & Maltoni, 2020; 
Rebuffi, Kolesnikov, Sperl, & Lampert, 2017). In recent years, research 
on ER-based methods has been considered crucial for enabling DNNs 
to continuously acquire new knowledge in dynamic and non-stationary 
sequential tasks. However, existing ER-based methods still suffer from 
significant prediction bias when applied to online continual learning 
(OCL) in sequential tasks. To address this issue, we propose an ER-
based framework with bias-correction strategies to improve the OCL 
performance of the models.

Prediction bias is strongly linked to parameter variations during 
training (Sun, 2019). In OCL scenarios, the non-stationary nature of 
sequential tasks poses additional challenges, leading to more intricate 
https://doi.org/10.1016/j.neunet.2025.107823
Received 21 January 2025; Received in revised form 19 May 2025; Accepted 29 Ju
vailable online 14 July 2025 
893-6080/© 2025 Elsevier Ltd. All rights are reserved, including those for text and 
ne 2025

data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
https://orcid.org/0009-0009-5449-8987
https://orcid.org/0000-0002-4627-9110
https://orcid.org/0000-0002-5658-7811
https://orcid.org/0000-0002-5138-3182
https://orcid.org/0000-0002-4301-394X
mailto:denghao1984@tongji.edu.cn
https://doi.org/10.1016/j.neunet.2025.107823
https://doi.org/10.1016/j.neunet.2025.107823
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2025.107823&domain=pdf


Z. Tao et al. Neural Networks 192 (2025) 107823 
Fig. 1. Schematic diagram of parameter variation imbalance in OCL. An exemplary four-layer network is trained through a data stream with three tasks. The shading of the neurons 
indicates the magnitude of their variations during the training of the task, with darker colors representing greater variations. The blue dashed boxes present the correlation-induced 
imbalance, where a small subset of parameters exhibits significantly larger variations during certain tasks. The red dashed boxes highlight the issue of layer-wise imbalance, where 
the average variation of the final linear layer in the network is significantly higher than that of adjacent layers.
and uneven parameter variations compared to conventional training 
settings (Castro, Marin-Jimenez, Guil, Schmid, & Alahari, 2018). Ex-
isting ER-based methods primarily aim to mitigate task interference 
or preserve learned knowledge (Buzzega, Boschini, Porrello, Abati, & 
Calderara, 2020; Caccia et al., 2022), but they lack explicit evaluation 
of parameter variations. As a result, these methods fail to effectively 
link parameter updates with task-specific requirements, limiting their 
ability to guide precise gradient adjustments and address prediction 
bias. In this work, as illustrated in Fig.  1, we investigate the issue of 
parameter variation imbalance in OCL and identify two key phenom-
ena. First, during training on OCL tasks, subsets of parameters undergo 
disproportionately large variations due to their strong correlations 
with task-specific memorization. We term this the correlation-induced 
imbalance, where these parameters are improperly optimized for indi-
vidual tasks, leading to uneven learning and interference across tasks. 
Second, the parameters of the output classifier exhibit significantly 
larger variations compared to adjacent layers, an issue we denote as 
the layer-wise imbalance. Our findings highlight that these imbalances, 
arising from uneven gradient updates across parameters, are critical 
contributors to prediction bias in OCL scenarios and underscore the 
need for systematic investigations into these dynamics.

For the correlation-induced imbalance issue, several CL approaches 
have investigated it, particularly from the perspective of parameter 
isolation. These methods suggest that different parameters of neural 
networks exhibit varying levels of correlation for memorizing previous 
tasks (Fernando et al., 2017; Mallya & Lazebnik, 2018). With CL 
parameter isolation methods, masks are typically used to freeze or 
adjust parameters closely related to previous learning tasks (Hurtado, 
Raymond, & Soto, 2021; Mallya, Davis, & Lazebnik, 2018), demon-
strating significant effectiveness in improving overall model accuracy. 
However, these methods require allocating distinct sets of parameters 
for each task, leading to increased storage consumption as the num-
ber of tasks grows, which makes them less suitable for the dynamic, 
non-stationary sequence tasks targeted by OCL. In contrast, ER-based 
methods integrate new and old knowledge by mixing input samples to 
correct the overall parameter variation direction, effectively mitigating 
prediction bias while maintaining relatively low resource consump-
tion. However, parameter updates in ER-based OCL methods may still 
deviate from the optimal direction during task switches due to the non-
independent and identically distributed (IID) nature of the learning 
samples. One of the underlying causes is the insufficient understanding 
of the correlation between parameter variations and previous task 
memory. Existing work lacks in-depth investigation of identifying cru-
cial parameters closely related to specific tasks and developing effective 
strategies to prevent these parameters from being improperly updated.

For the layer-wise imbalance issue, it stems from the observation 
that during the short task sequence OCL training process, parameters 
2 
in the output classifier, i.e., the output layer parameters, tend to update 
more rapidly compared to other parameters (Chrysakis & Moens, 2023). 
This phenomenon can lead to a significant imbalance in parameter 
variations which further leads to prediction bias in the model (Wu 
et al., 2019). Existing research primarily focuses on improving the 
output layer individually based on experience replay (Pellegrini et al., 
2020), e.g., adding a bias correction layer after the output layer (Wu 
et al., 2019), using a surrogate classifier instead of the output layer 
during training (Chrysakis & Moens, 2023), and developing unique 
update strategies for the output layer (Lomonaco & Maltoni, 2017). 
For instance, CWR* is a commonly adopted strategy for prediction bias 
correction by performing frequency-based magnitude adjustment in the 
output layer (Lomonaco, Maltoni, Pellegrini, et al., 2020). However, 
the first two methods inevitably increase the network complexity and 
the associated training costs, while the latter may introduce additional 
time expenditure and lead to suboptimal results. Designing an effective 
update strategy for the output layer that better adapts to dynamically 
non-stationary tasks remains a challenge.

In this paper, we propose a Parameter Variation Balancing Frame-
work (PVBF), which updates overall model parameters and output 
layer parameters at different stages to address the above two issues in 
OCL. To mitigate the correlation-induced imbalance, PVBF introduces 
Parameter Correlation Calculation (ParamCC) to quantify the corre-
lation between each parameter and previous tasks. Building on this 
correlation measure, we propose Encourage and Consolidate (E&C), 
a strategy that assigns adaptive gradient descent coefficients to pa-
rameters. This approach encourages the network to rapidly update 
parameters with low correlation to previous tasks while consolidating 
the memory of parameters with high correlation, thereby mitigating 
the prediction bias caused by the correlation-induced imbalance. To 
tackle layer-wise imbalance, we propose Dual-layer Copy Weights with 
Reinit (D-CWR), an improvement over the CWR* strategy. Inspired 
by human memory mechanisms (sensory memory, short-term memory, 
and long-term memory), D-CWR employs a two-stage consolidation 
process (Nairne & Neath, 2003), which can effectively mitigate the 
prediction bias caused by the output classifier in short task sequence 
OCL scenarios. The main contributions of this paper can be summarized 
as follows.

∙ It provides an evaluation method of parameter variations by 
capturing parameters’ relative changes during training. On this 
basis, we identify parameter variation imbalance in OCL through 
two aspects: correlation-induced imbalance and layer-wise imbal-
ance, which provides prerequisites for optimized learning strategy 
design.

∙ It proposes a two-phase approach to mitigate correlation-induced 
imbalance at the overall parameter level of neural networks. 
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First, Parameter Correlation Calculate (ParamCC) quantifies the 
correlation between parameter variations and the memory of 
previously learned tasks. Then, Encourage and Consolidate (E&C) 
strategy adjusts gradients by considering correlations as divisors 
to fine-tune the parameter updates. Together, parameter varia-
tion direction can be effectively corrected without huge network 
complexity increase.

∙ It proposes a bio-inspired Dual-layer Copy Weights with Re-
init (D-CWR) method to mitigate layer-wise imbalance. Drawing 
inspiration from the human memory mechanism, D-CWR employs 
memory consolidations at two layers, i.e., from sensory to short-
term and from short-term to long-term memory, which further 
avoids forgetting due to rapid parameter updates in the output 
classifier over existing methods.

∙ It presents a Parameter Variation Balancing Framework (PVBF) by 
integrating ParamCC, E&C and D-CWR. Experiments conducted in 
both short and long task sequence OCL scenarios show that PVBF 
achieves an average accuracy improvement of 31%–47% over 
the ER method. Especially, it reaches 97.5% of the IID method’s 
accuracy using only 500 replay samples on the MiniImageNet 
dataset. PVBF also exhibits general outperformance in offline CL 
scenarios among classical methods.

2. Related work

In this section, we briefly review three key categories of research 
relevant to the current work: traditional CL methods, ER-based meth-
ods, and output correction methods. The strengths and weaknesses of 
each method are briefly discussed.

2.1. CL methods

Contemporary CL methodologies predominantly fall into three cat-
egories (Van de Ven & Tolias, 2019). Regularization-based approaches 
penalize parameter updates to enforce convergence within a shared 
representation space across diverse tasks (Chaudhry, Dokania, et al., 
2018; Kirkpatrick et al., 2017; Zenke, Poole, & Ganguli, 2017). These 
approaches tackle the problem of catastrophic forgetting by constrain-
ing the parameter update methods. However, they faces challenges in 
balancing between stability and plasticity, often resulting in subopti-
mal performance and high computational cost. Memory-based strate-
gies integrate prior task knowledge through sample or representation-
based memory adjustments during training (Bonicelli, Boschini, Por-
rello, Spampinato, & Calderara, 2022; Chaudhry, Ranzato, Rohrbach, & 
Elhoseiny, 2018; Lopez-Paz & Ranzato, 2017; Riemer et al., 2018; Shin, 
Lee, Kim, & Kim, 2017; Wang, Zhou, Ye, & Zhan, 2022). While these 
methods effectively retain valuable knowledge across tasks, a capability 
that has been validated in question generation studies (Yuan, Yin, et al., 
2022), they require storing a subset of training samples and may intro-
duce prediction bias to some extent due to issues with the training data 
distribution. Dynamic structures-based approaches adapt network ar-
chitectures to ensure task-specific parameter isolation, accommodating 
the integration of novel tasks (Li & Hoiem, 2017; Lomonaco et al., 2020; 
Von Oswald, Henning, Grewe, & Sacramento, 2019; Yoon, Yang, Lee, 
& Hwang, 2017). These approaches address the issue of interference by 
isolating task-specific knowledge, but they struggle with computational 
efficiency and spatial scalability as the number of tasks increases. 
Recently, prompt-based methods have also been included in CL, demon-
strating promising performance in domains such as automatic program 
repair (Yuan, Zhang, et al., 2022). These approaches often rely heavily 
on large-scale pretrained models. Thus, methods in OCL often combine 
with memory-based strategies. However, challenges remain in strik-
ing a balance between memory usage, computational efficiency, and 
maintaining performance on non-stationary data streams.
3 
2.2. ER-based methods

Existing effective approaches in OCL typically adopt strategies that 
involve replaying samples or representations. To mitigate catastrophic 
forgetting caused by task changes, ICaRL (Rebuffi et al., 2017) com-
bines distillation loss with binary cross-entropy, classifying samples 
based on nearest-class prototypes computed from buffered data repre-
sentations, which is suitable for class incremental learning scenarios 
where each task is sufficiently trained. However, in OCL scenarios, 
iCaRL often underperforms due to insufficient training on newer tasks. 
ER (Chaudhry et al., 2019) employs a fixed-size replay buffer, ran-
domly replaying a subset of samples. Despite its simplicity, ER faces 
challenges in maintaining performance when learning from both re-
played samples and data stream samples simultaneously. To address 
this issue, GDumb (Prabhu, Torr, & Dokania, 2020) maintains a class-
balanced memory pool and trains the model exclusively on these 
samples, although the size of the memory pool often constrains its 
effectiveness. MIR (Aljundi , Belilovsky, et al., 2019) introduces an 
alternative improvement to ER by selecting samples that maximize the 
increase in loss during replay. This method further reduces prediction 
bias, albeit at the cost of increased computational burden. For loss 
calculation, DER++ (Buzzega et al., 2020) employs distillation loss on 
logits to enforce consistency over time, while ACE (Caccia et al., 2022) 
mitigates sudden representation changes using an asymmetric update 
rule. Although DER++ and ACE are promising in stabilizing learned 
knowledge, they fail to resolve the issue of spatially or structurally 
imbalanced parameter updates across the network, which can lead to 
significant prediction bias.

2.3. Output correction methods

In OCL scenarios, prediction bias is closely related to rapid updates 
of the output classifier during backpropagation (Wu et al., 2019). 
OBC (Chrysakis & Moens, 2023) independently optimizes output classi-
fier to correct significant prediction bias during training. AR1*
(Lomonaco et al., 2020) combines latent replay methods with opti-
mized output classifier updates from CWR* to enhance performance. 
The CWR* method aligns the parameters in the output classifier with 
individual categories. It adjusts the update magnitude of these param-
eters based on the ratio of the frequency of data from a particular 
class in past occurrences to its frequency in a single training iteration, 
thereby correcting prediction bias. These strategies address the bias in 
the output classifier but do not simultaneously correct the bias in other 
parameters, leaving room for further improvement.

Although the three types of methods discussed above do not directly 
address the issue of parameter variation imbalance, they provide foun-
dational ideas that have informed our approach to solving this problem. 
ER effectively mitigates catastrophic forgetting caused by non-IID data 
distributions in streaming tasks, while asymmetric cross entropy (ACE) 
helps achieve more accurate and balanced gradient updates. These 
strategies contribute to balancing parameter variations during OCL 
training to some extent, and thus, we integrate these concepts into our 
proposed framework. Furthermore, previous work on special handling 
of the output classifier has inspired our approach to addressing the issue 
of layer-wise imbalance.

3. Methodology

In this section, a detailed explanation of parameter variation im-
balance is first presented, including its two specific forms and their 
manifestations in the OCL scenario. The proposed PVBF is then in-
troduced, along with its applicable learning settings. Finally, detailed 
design and implementations of innovative methods incorporated into 
PVBF, namely ParamCC, E&C, and D-CWR, are described, respectively.
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3.1. Parameter variation evaluate

In OCL, model parameters continuously evolve with the training of 
various tasks, and the ultimate result of this variation determines the 
model’s adaptability across the entire online data stream. Therefore, we 
aim to calculate the variations of its parameters upon the completion 
of training for each task in the OCL context, revealing the patterns of 
parameter variation.

To record the parameters optimized through task 𝑘 (where 𝑘 ∈
{1,… , 𝐾} and 𝐾 denotes the total number of tasks), we capture the 
model state at the moment of the first occurrence of (𝑘 + 1) − th
task denoted as 𝜃1.𝑘,… , 𝜃𝑀,𝑘 (where 𝑀 represents the total number 
of parameters in the neural network). To model the variation of pa-
rameters, we first define the variation in parameter ranked 𝑚 (𝑚 ∈
{1,… ,𝑀}) between task 𝑘 and 𝑘 − 1 as 𝛿𝑚,𝑘, which is calculated using 
the Manhattan distance as 
𝛿𝑚,𝑘 = |𝜃𝑚,𝑘 − 𝜃𝑚,𝑘−1|, (1)

where | ⋅ | denotes the Manhattan distance operator.
Due to significant differences in gradient updates between differ-

ent parts of the network, 𝛿𝑚,𝑘 can vary considerably for different 
𝑚. Consequently, relying solely on its numerical variation may not 
accurately capture the correlation between parameters and tasks. To 
address this issue, we first standardize 𝛿𝑚,𝑘 for each parameter while 
preserving relative changes, thereby mitigating the impact of numerical 
imbalance: 
𝛿′𝑚,𝑘 = (𝛿𝑚,𝑘), (2)

where  is a customized standardization function, and 𝛿′𝑚,𝑘 is defined 
as the relative change of parameter 𝑚 on task 𝑘.

Here we introduce three exemplary standardization functions uti-
lized in identifying parameter variance imbalance. The first is the 
relative ratio (RR) function denoted by 𝑅𝑅(⋅), which is expressed as

𝛿𝑘 =
∑𝑀

𝑚=1 𝛿𝑚,𝑘
𝑀

, 𝑅𝑅(𝛿𝑚,𝑘) =
𝛿𝑚,𝑘
𝛿𝑘

, (3)

where 𝛿𝑘 represents the mean parameter variation for task 𝑘. This 
standardization enables 𝛿′𝑚,𝑘 to capture relative parameter variation 
patterns without being affected by the absolute values of gradient 
updates. Additionally, by using a proportional form, this method mit-
igates the impact of different network architectures while intuitively 
highlighting imbalances in parameter variations, making it easier to 
identify parameters with disproportionately large or irregular updates.

As an alternative to the RR approach, Z-score (ZS) standardization 
method focuses on scaling the parameter variations with respect to 
their mean and standard deviation. The ZS standardization denoted by 
𝑍𝑆(⋅) is defined as 

𝜎𝑘 =

√

√

√

√
1
𝑀

𝑀
∑

𝑚=1
(𝛿𝑚,𝑘 − 𝛿𝑘)2, 𝑍𝑆(𝛿𝑚,𝑘) =

𝛿𝑚,𝑘 − 𝛿𝑘
𝜎𝑘

, (4)

where 𝜎𝑘 represents the standard deviation of the parameter variations 
for task 𝑘. ZS method accounts for both the central tendency and the 
spread of variations. Unlike the RR approach, the ZS method does not 
rely on task-specific variation proportions but instead standardizes the 
variations based on statistical properties, making it particularly useful 
for highly heterogeneous variations or those with significant outliers.

The last standardization method is robust scaler (RS), which is also 
particularly advantageous for handling significant outliers or skewed 
distributions of parameter variations. The RS method standardizes the 
variations based on the median and interquartile range (IQR), which is 
defined as 

𝑅𝑆(𝛿𝑚,𝑘) =
𝛿𝑚,𝑘 −𝑀𝑒𝑑𝑖𝑎𝑛(𝛿𝑘)

𝐼𝑄𝑅(𝛿𝑘)
, (5)

where 𝑀𝑒𝑑𝑖𝑎𝑛(𝛿𝑘) represents the median and 𝐼𝑄𝑅(𝛿𝑘) is the interquar-
tile range (the difference between the 75th and 25th percentiles) of 
4 
parameter variations for task 𝑘. The RS method is highly resilient to 
outliers, as the median and IQR are less sensitive to extreme values than 
the mean, ensuring robust parameter scaling in noisy or heavy-tailed 
distributions.

Using the above standardization methods for obtaining 𝛿′𝑚,𝑘, we 
recorded the relative changes at the end of 1 ∼ 4 task in a sequence 
of short tasks (a total of 5 tasks) during continual training on Ci-
far10 (Krizhevsky, Hinton, et al., 2009) with ER method (Chaudhry 
et al., 2019) using a backbone of reduced-Resnet18 (Aljundi, Belilovsky,
et al., 2019). Through numerical analysis, RR intuitively demonstrates 
the relative differences in parameter updates, highlighting potential 
imbalances in both the overall and hierarchical patterns of parame-
ter variations, while maintaining minimal computational complexity. 
Therefore, for all the analysis and experiments presented below, we 
specifically used the RR standardization method. The results obtained 
using the other two standardization methods are provided in Appendix 
A. More importantly, our observations reveal two distinct imbalances 
within the OCL scenario, as shown in Figs.  2 and 3.

Correlation-induced Imbalance. Fig.  2 illustrates the uneven dis-
tribution of parameter updates during OCL training, where a small 
fraction of parameters undergo significant changes, with some updates 
exceeding 64 times the mean, while over 65% of parameters exhibit 
updates smaller than the mean (𝛿′𝑚,𝑘 < 1). This indicates that most 
parameters remain inactive, contributing minimally to task learning. In 
contrast, a smaller subset of parameters which experience substantial 
updates correlates closely with task memory. Such imbalances sug-
gest inefficient parameter utilization, where inactive parameters are 
underutilized, and heavily updated parameters are at risk of causing 
catastrophic forgetting. Therefore, subsequent training should focus on 
better engaging inactive parameters while safeguarding those critical 
for task retention.

Layer-wise Imbalance. Fig.  3 demonstrates that in CL, the out-
put classifier, i.e. the last linear layer, exhibits consistently higher 
parameter update rates compared to earlier feature extraction layers. 
This occurs because backpropagation begins at the classifier, which 
directly addresses prediction bias, particularly when input samples 
are imbalanced. Consequently, the classifier undergoes more frequent 
and larger updates, amplifying prediction biases and potentially desta-
bilizing learning. To mitigate this, balancing updates across layers 
or restricting output classifier updates can reduce this disparity and 
improve the overall stability of the model.

3.2. Overview of parameter variation balancing framework

To address the two parameter variation imbalance issues outlined 
above, we propose PVBF designed for OCL scenarios. As in Fig.  4, 
PVBF primarily consists of two balancing strategies, E&C and D-CWR
to mitigate imbalanced parameter variations in both the overall and 
the output layer level during training, thereby enhancing the net-
work’s adaptability to non-stationary data streams. PVBF builds upon 
an ER framework, which retains a memory buffer storing part samples 
from previous tasks to aid in knowledge retention. For each neuron 
in each task, ParamCC is proposed to calculate correlation between 
parameter and previous tasks by capturing the variations in parameter 
weights during the training process. First, it employs a Manhattan 
distance-based metric to monitor relative parameter changes after each 
OCL task. Then, these changes are normalized using Min-Max nor-
malization before and after task transitions to ensure a consistent 
correlation measurement (Jiawei & Micheline, 2006). To reduce time 
and space overhead, only the maximum correlation value of each 
parameter is retained throughout training. Based on these correlation 
values, E&C is then applied to update the gradients, encouraging low-
correlation parameters to acquire new knowledge while consolidating 
high-correlation parameters to preserve previously learned knowledge. 
At the end of each task’s training, the D-CWR strategy is applied to 
the output classifier. Parameters obtained through gradient descent are 
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Fig. 2. Neuron counts for different relative changes 𝛿′𝑚,𝑘.
Fig. 3. Average relative changes in parameters across different layers.
treated as sensory memory. Class-specific knowledge is then selectively 
transferred to a short-term memory pool through the first consolidation, 
followed by further consolidation into a long-term memory pool with a 
defined probability. Finally, the knowledge stored in long-term memory 
is used for prediction. This strategy slows the update rate of output 
layer parameters to reduce the prediction bias caused by rapid updates 
in this layer.

Besides, our study focuses on CL in dynamic and non-stationary 
sequential tasks. Firstly, we adopt the CL setting, where a model with 
parameters 𝜣 must generalize well to test data without full access to 
previous training samples (Caccia et al., 2022). Each task 𝑘 consists 
of training data 𝐃𝑘 = {𝐗𝑘,𝐘𝑘}, where 𝐗𝑘 presents the input data and 
𝐘𝑘 the corresponding labels. To ensure task diversity, we follow the 
classic disjoint label setting, where label sets of different tasks do not 
overlap (𝐘𝑖 ∩ 𝐘𝑗 = ∅ for 𝑖 ≠ 𝑗). Building upon this, we further explore 
OCL setting, where training process is divided into several time steps, 
with each time step corresponding to a single batch of training data. 
At each time step 𝑡, the model receives a new batch of training data 
(𝐗𝑖𝑛

𝑡 ,𝐘
𝑖𝑛
𝑡 ). Over time, the data distribution shifts as new tasks emerge. 

Specifically, at certain time steps {𝑡𝛼 , 𝑡𝛽 ,…} ∈ 𝑇 , the data transition 
from one task to another, which means that the continuous two sets of 
samples that the learner receives may belong to different tasks, namely 
{𝐗𝑖𝑛

𝑡𝛼−1
,𝐘𝑖𝑛

𝑡𝛼−1
} ∈ 𝐷𝑘 and {𝐗𝑖𝑛

𝑡𝛼
,𝐘𝑖𝑛

𝑡𝛼
} ∈ 𝐷𝑘+1. The training tasks occur 

sequentially, and task identifiers are not provided during evaluation. 
In this non-stationary setting, maintaining the neural network’s classi-
fication performance across tasks is particularly challenging. We posit 
that preserving more task-specific network parameters’ memory dur-
ing learning while mitigating prediction bias from parameter updates 
during new task learning is critical to overcoming this challenge.

We adopt ACE to compute the loss, which separately handles data 
from the data stream and the memory buffer (Caccia et al., 2022). The 
total loss is given by 

(𝐗𝑏𝑓 ∪ 𝐗𝑖𝑛) = 𝑟𝑒(𝐗𝑏𝑓 ,𝐘𝑜𝑙𝑑 ∪ 𝐘𝑐𝑢𝑟𝑟) + 𝑖𝑛(𝐗𝑖𝑛,𝐘𝑐𝑢𝑟𝑟), (6)
𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

5 
Algorithm 1 Parameter Variation Balancing Framework (PVBF)
Input the hyperparameter 𝛼, 𝛽, Learning rate 𝑙. 
Initialize network parameters 𝜣 ,gradients 𝒈, and memory buffer 
size M
Initialize 𝑪, 𝑴𝒔, 𝑴𝒄 , 𝑴 𝒍 and 𝑷  to zeroes 
for each task 𝑘 ∈ {1, ..., 𝐾} do 
  store network parameters 𝜣 in 𝜽𝑘−1
  for each training batch at timestep 𝑡 (𝐁𝑡) do 
  receive 𝐗𝑖𝑛

𝑡 ∼ 𝐁𝑡 from input stream, 𝐗𝑟𝑒
𝑡 ∼ 𝐌 from memory 

buffer 
  Calculate (𝐗𝑏𝑓

𝑡 ∪ 𝐗𝑖𝑛
𝑡 )

 𝒈 ← 𝑆𝐺𝐷(∇,𝜣) //calculate gradients 
  if 𝑘 > 1 𝒈′ ← 𝒈,𝑪 ⊳ section 3.4 
 𝜣 ← 𝒈′, 𝑙
  end for 
 𝜹′ ← 𝜣,𝜽𝑘−1 ⊳ section 3.2 
 𝑪 ← 𝜹′, 𝛼, 𝛽 ⊳ section 3.3 
  update 𝑴𝒔, 𝑴𝒄 , 𝑴 𝒍 and 𝑷  using D-CWR ⊳ section 3.5 
end for

where  denotes the total loss function, 𝑖𝑛 and 𝑟𝑒 represent the cross-
entropy loss of the data stream and data obtained from the memory 
buffer, 𝐗𝑏𝑓

𝑡  and 𝐗𝑖𝑛
𝑡  represent the subsets of training samples at time 

step 𝑡, 𝐘𝑜𝑙𝑑
𝑡  denotes the classes encountered up to that point, and 𝐘𝑐𝑢𝑟𝑟

𝑡
refers to the current training classes. Finally, a complete workflow of 
PVBF is provided in Algorithm 1. In the following, we will detail key 
designs of ParamCC, E&C strategy, and D-CWR strategy, respectively.

3.3. Parameter correlation calculate

To reduce the impact of gradient updates on absolute parameter 
variations and clarify the relationship between parameter variations 
and their correlation with previous tasks, Min-Max normalization can 
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Fig. 4. Overall illustration of PVBF. PVBF is built upon a conventional experience replay framework and incorporates two main strategies for balancing parameter variations. First, 
the Encourage and Consolidate (E&C) strategy dynamically adjusts all neurons in the network during training. This strategy leverages the parameter correlations obtained through 
the Parameter Correlation Calculate (ParamCC) method during training to adjust the gradients computed by the Stochastic Gradient Decent (SGD) process. Second, the Dual-layer 
Copy Weights with Re-init (D-CWR) strategy is specifically applied to the output classifier, which progressively reinforces knowledge of individual class categories.
be used to standardize parameter correlations within a fixed range. 
Based on this idea, we introduce ParamCC, a method for evaluating the 
association between specific neural network parameters and previously 
learned tasks. The correlation of each parameter 𝜃𝑚 to the memory of 
task 𝑘 can be expressed as follows: 

𝐶𝑚,𝑘 =
𝛿′𝑚,𝑘 − min(𝑽 𝑘)

max(𝑽 𝑘) − min(𝑽 𝑘)
⋅ (𝛽 − 𝛼) + 𝛼, (7)

where 𝐶𝑚,𝑘 denotes the correlation of parameter 𝑚 with the memory of 
task 𝑘, and 𝑽 𝑘 = {𝛿′1,𝑘,… , 𝛿′𝑀,𝑘} represents the set of relative changes. 
The hyperparameters 𝛼 and 𝛽 define the range of correlation for the 
parameters with the tasks, with 𝐶𝑚,𝑘 being normalized to the interval 
[𝛼, 𝛽].

By applying the aforementioned methods, we can derive a cor-
relation measure 𝐶𝑚,𝑘 for each parameter in the network with each 
previously trained task. To efficiently utilize this correlation measure 
and reduce computational and spatial overhead, we maintain only 
the maximum correlation of each parameter with the previous tasks 
throughout the training process as 
𝐶𝑚 = max

𝑟∈{1,…,𝑘−1}
𝐶𝑚,𝑟, (8)

where 𝐶𝑚 represents the correlation of parameter 𝑚 with all previously 
experienced tasks, and its value can be computed in real time during 
the training process. The variable 𝑘 denotes the task currently being 
trained.

3.4. Encourage and consolidate

To mitigate catastrophic forgetting, we further integrate parameter 
correlation into the training process and propose a gradient correction 
method called E&C. The core idea is to encourage rapid updates for 
parameters with low correlation to previous tasks while consolidating 
those with high correlation by decelerating their update rates. For time 
step 𝑡, the gradient 𝑔𝑚,𝑡 obtained by neuron 𝑚 through gradient descent 
undergoes the following correction process: 

𝑔′ =
𝑔𝑚,𝑡 , (9)
𝑚,𝑡 𝐶𝑚

6 
where 𝑔′𝑚,𝑡 represents the adjusted gradient for neuron 𝑚 at time step 
𝑡, taking into account the correlation of the parameters to previously 
learned tasks. This correction enables rapid updates for parameters 
with low correlation to previous tasks, thereby encouraging them to 
acquire new knowledge. Conversely, it ensures that parameters with 
high correlation to previous tasks are updated more cautiously, thereby 
consolidating their memory of those tasks. During the training pro-
cess of online continual learning, we utilize the corrected parameters 
{𝑔′1,𝑡,… , 𝑔′𝑀,𝑡} for parameter updates. This E&C approach facilitates a 
balance between learning new tasks and retaining knowledge of old 
tasks, ultimately enhancing the model’s adaptability and mitigating 
catastrophic forgetting.

3.5. Dual-layer copy weights with Re-init

To minimize the phenomenon of parameter variation imbalance, in 
addition to the E&C method designed for overall model-level correc-
tions, PVBF incorporates a specialized correction method specifically 
targeting the output classifier. Inspired by the interactions among 
sensory memory, short-term memory, and long-term memory (denoted 
as 𝑠, 𝑐, 𝑙) in the complementary learning systems (CLS) framework (Mc-
Clelland, McNaughton, & O’Reilly, 1995), we propose an improved 
approach that enhances memory consolidation and reduces forgetting. 
Specifically, we introduce a D-CWR method that simulates the memory 
process after copying weights, which involves two consolidation layers: 
the first layer simulates the hippocampal process of converting sensory 
memory into short-term memory, while the second layer models the 
neocortical process of transferring short-term memory into long-term 
memory. In the following, we first define the concept of sensory mem-
ory in the context of the output classifier, followed by an explanation 
of the short-term and long-term consolidation processes.

We consider that the sensory memory of the output classifier origi-
nates from the knowledge acquired during the training process, partic-
ularly the model parameter weights obtained through gradient descent. 
In experiments conducted in Maltoni and Lomonaco (2019), a tech-
nique called mean-shift effectively normalizes the output classification 
layer model parameters, maintaining them within a certain range while 
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emphasizing the features of individual classes, which inspires our de-
sign of sensory memory. We define the sensory memory of the output 
classifier as the parameter weights assigned to each class after each 
training iteration, subtracted by the mean of the weights across all 
classes that appear in that iteration, specifically as follows: 

𝑀𝑠
𝑗,𝑡 = 𝜔𝑗,𝑡 −

∑

𝑘∈𝑆𝑡
𝜔𝑘,𝑡

|𝑆𝑡|
, (10)

where 𝑀𝑠
𝑗,𝑡 represents the sensory memory of the model for class 𝑗, 𝜔𝑗,𝑡

denotes the 𝑗th parameter of the output classifier, and 𝑆𝑡 represents 
the set of sample labels input to the model, at time step 𝑡, operator | ⋅ |
indicates calculating the cardinality of the set. Note that the mapping 
of the output classifier parameters to each class is determined by the 
properties of the softmax activation function. The softmax function 
connecting the final linear layer transforms the output layer parameters 
into classification probabilities for each class.

In CLS, the hippocampus is responsible for converting sensory mem-
ory into short-term memory by selectively processing certain informa-
tion. The first layer of the D-CWR consolidation strategy simulates this 
process of the hippocampus. When sensory memory is received, D-
CWR randomly selects one of the following two actions to execute: (i) 
Integrating the current sensory memory with the existing short-term 
memory; (ii) Retaining the previous short-term memory while with-
holding processing the current sensory memory. The model handles 
the short-term memory 𝑀𝑐

𝑗,𝑡 for class 𝑗 at time step 𝑡, which can be 
calculated as 

𝑀𝑐
𝑗,𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑀𝑐
𝑗,𝑡−1, if 𝜖 ≥ 𝑝

𝑀𝑐
𝑗,𝑡−1⋅𝜂

𝑐
𝑗,𝑡+𝑀

𝑠
𝑗,𝑡

𝜂𝑐𝑗,𝑡+1
, if 𝜖 < 𝑝,

(11)

where 𝜖 is a random variable uniformly distributed in the interval 
[0, 1], 𝑝 is a hyperparameter representing the probability that the model 
converts sensory memory into short-term memory, and 𝜂𝑐𝑗,𝑡 denotes the 
short-term memory retention coefficient for class 𝑗 at time step 𝑡.

The neocortex plays a key role in converting short-term memory 
into long-term memory, with more frequent review of a particular class 
leading to stronger memory consolidation. The second layer of the 
D-CWR consolidation strategy simulates this process of the neocortex 
by integrating short-term memory with existing long-term memory 
according to a specified retention ratio. The long-term memory 𝑀 𝑙

𝑗,𝑡
for class 𝑗 at time step 𝑡 is expressed as 

𝑀 𝑙
𝑗,𝑡 =

𝑀 𝑙
𝑗,𝑡−1 ⋅ 𝜂

𝑙
𝑗,𝑡 +𝑀𝑐

𝑗,𝑡

𝜂𝑙𝑗,𝑡 + 1
, (12)

where 𝜂𝑙𝑗,𝑡 denotes the long-term memory retention coefficient for class 
𝑗 at time step 𝑡, 𝜂𝑙𝑗,𝑡 can be calculated alongside the short-term memory 
retention coefficient 𝜂𝑐𝑗  for class 𝑗 at time step 𝑡 as 

𝜂𝑐𝑗,𝑡 =
𝑃𝑗,𝑡

𝑈𝑗,𝑡
; 𝜂𝑙𝑗,𝑡 =

√

𝑃𝑗,𝑡

𝑈𝑗,𝑡
, (13)

with 𝑃𝑗,𝑡 denotes the number of times class 𝑗 has appeared during the 
model training process at time step 𝑡, and 𝑈𝑗,𝑡 represents the number 
of occurrences of class 𝑗 in the label set 𝑆𝑡. Notably, the retention 
coefficients 𝜂𝑐𝑗,𝑡 and 𝜂𝑙𝑗,𝑡 are designed to naturally adapt to the continual 
growth of the datestream. Since 𝑃𝑗,𝑡 and 𝑈𝑗,𝑡 are incrementally updated 
during training, the memory consolidation process automatically re-
flects the relative importance and frequency of each class over time. 
This mechanism allows D-CWR to effectively manage the evolving 
distribution of sensory, short-term, and long-term memory without 
requiring large storage or revisiting of past data.

To implement the D-CWR strategy, we present the algorithm that 
integrates the two consolidation stages, which begins by initializing 
memory vectors for sensory, short-term, and long-term memory. For 
each training step, it computes the sensory memory of the output 
classifier and updates short-term memory based on a probabilistic 
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decision determined by a random variable 𝜖 and a hyperparameter 
𝑝. The short-term memory is subsequently consolidated into long-
term memory using class-specific retention coefficients. This process 
ensures that the classifier’s memory is continuously updated, preserving 
important knowledge while mitigating forgetting. The detailed steps of 
this memory consolidation procedure are summarized in Algorithm 2.

Algorithm 2 Dual-Layer Copy Weights with Re-init (D-CWR)
Initialize Initialize vector 𝑴𝒔, 𝑴𝒄 , 𝑴 𝒍 and 𝑷  to zeroes 
for each training time step 𝑡 batch samples 𝑺 𝑡(𝑿𝑖𝑛

𝑡 ∪𝑿𝑟𝑒
𝑡 ) do 

  Denote 𝜔𝑗 as the 𝑗-th parameter of the output classifier 
 𝜔 ←

∑

𝑘∈𝑆𝑡
𝜔𝑘∕|𝑆𝑡|

  for each category 𝑗 appearing in the batch 𝑺 𝑖 do
 𝑀𝑠

𝑗 ← 𝜔𝑗 − 𝜔
  Obtain the occurrences of class 𝑗 in 𝑺 𝑡 as 𝑈𝑗 . 
 𝜂𝑐𝑗 ←

𝑃𝑗
𝑈𝑗

 𝜂𝑙𝑗 ←
√

𝑃𝑗
𝑈𝑗

  Perform one of the following operations based on a random 
variable 𝜖 and hyperparameter 𝑝: 
 𝜖 ≥ 𝑝: Retain 𝑀𝑐

𝑗

 𝜖 < 𝑝: 𝑀𝑐
𝑗 ←

𝑀𝑐
𝑗 ⋅𝜂

𝑐
𝑗+𝑀

𝑠
𝑗

𝜂𝑐𝑗+1

 𝑀 𝑙
𝑗 ←

𝑀 𝑙
𝑗 ⋅𝜂

𝑙
𝑗+𝑀

𝑐
𝑗

𝜂𝑙𝑗+1
. 

 𝑃𝑗 ← 𝑃𝑗 + 𝑈𝑗 . 
  end for 
 𝝎 ← 𝑴 𝒍

end for

With the above methods, we address the issue of correlation-
induced imbalance and layer-wise imbalance in OCL from two perspec-
tives: the overall model parameters and the output classifier param-
eters. This results in a parameter variation balancing framework that 
enables network models to better adapt to non-stationary data streams. 
Theoretically, the ParamCC and E&C strategies effectively capture 
the correlations between parameter variations and the knowledge of 
each task. By utilizing these correlations, they dynamically adjust the 
magnitude of parameter variations during subsequent training, thereby 
balancing the retention of new and old knowledge. These two strategies 
further enhance the performance of ER-based methods in continual 
learning. Not only are they highly effective in online scenarios, but 
they also show some benefits in offline settings. On the other hand, 
the D-CWR method primarily mitigates the layer-wise imbalance, prov-
ing effective in counteracting forgetting when the output classifier 
undergoes rapid updates.

4. Experiments

In this section, we first compare PVBF with competitive methods 
based on ER in two OCL scenarios: short task sequences and long 
task sequences. Next, we compare PVBF with other canonical ER-based 
methods in an offline CL scenario. The design of these experiments aims 
to validate the following performance metrics: (i) PVBF performs well 
across various OCL scenarios; (ii) PVBF components effectively mitigate 
the imbalance in parameter changes, thereby alleviating forgetting 
in OCL scenarios; (iii) Despite being specifically designed for OCL 
scenarios, PVBF still demonstrates strong performance when applied to 
offline CL settings.

4.1. OCL experiments

We first evaluate the performance of PVBF in the OCL setting, 
where samples from each task are sequentially presented to the model 
in a one-shot manner. As such, this setup places a high demand on 
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Fig. 5. ACC results for short task sequence OCL experiments (PVBF-D: PVBF without D-CWR).
the model’s ability to adapt to non-stationary data streams. Only CL 
algorithms specifically designed for such challenges can effectively mit-
igate catastrophic forgetting in this setting. An effective OCL algorithm 
should efficiently learn the essential knowledge required to complete 
tasks with high accuracy while minimizing computational overhead.

4.1.1. Datasets and setup
We conducted experiments to evaluate OCL for image classification 

tasks. As with other OCL experiments (Caccia et al., 2022; Chrysakis 
& Moens, 2023), all benchmarks were evaluated in a single-head set-
ting. In each of the datasets mentioned below, the model performs a 
classification task across 𝑁 classes, where 𝑁 depends on the specific 
dataset.

We selected three representative image datasets to conduct these 
OCL experiments: Split Cifar10, Split Cifar100 (Krizhevsky et al., 2009), 
and Split MiniImagenet (Vinyals, Blundell, Lillicrap, Wierstra, et al., 
2016). These datasets are commonly used for evaluating OCL, with a 
focus on image classification tasks. The details on task division of the 
three adopted datasets are illustrated below:

Split Cifar10: This dataset consists of 60,000 images across 10 
classes. It is one of the most widely adopted datasets in OCL research, 
often used as the standard benchmark for tasks with short task se-
quences. For our experiments, we partitioned the dataset into 5 tasks, 
each containing 2 classes.

Split Cifar100: The Cifar100 dataset includes 60,000 images spread 
across 100 classes. In our experiments, it was partitioned into 20 
tasks, with each task containing 5 classes. This dataset presents a more 
complex and diverse challenge, making it suitable for evaluating OCL 
with longer task sequences.

Split MiniImagenet: This dataset consists of 100 classes, with each 
class containing 600 images. We partitioned it into 20 tasks, each with 
5 classes. Like Cifar100, MiniImagenet is highly challenging for OCL 
due to its more diverse categories and longer task sequences.

4.1.2. Baselines
In our evaluation, we focus on replay-based methods due to their 

demonstrated effectiveness in the OCL setting, evidenced by previous 
studies (Aljundi, Belilovsky, et al., 2019; Caccia et al., 2022; Chaudhry 
et al., 2019; Ji, Henriques, Tuytelaars, & Vedaldi, 2020). Within this 
context, high-efficiency learning is necessary for all methods under 
consideration. To ensure a fair comparison, we have implemented 
uniform buffer management across all methods, employing Reservoir 
Sampling (Vitter, 1985) to retain or discard samples. We have se-
lected several classic and state-of-the-art OCL baselines for our analysis, 
including ER (Chaudhry et al., 2019), Incremental Classifier and Repre-
sentation Learning (iCaRL) (Rebuffi et al., 2017), Maximally Interfered 
Retrieval (MIR) (Aljundi, Belilovsky, et al., 2019), Dark Experience 
Replay (DER++) (Buzzega et al., 2020), Experience Replay with Asym-
metric Cross-Entropy (ER-ACE) (Caccia et al., 2022), and Architect-and-
Replay (AR1*) (Lomonaco et al., 2020). Additionally, we include an 
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independent and IID scenario (Caccia et al., 2022) as a benchmark, 
where the learner is trained on the dataset with a single pass, treating 
all classes as if they were part of a single task. This baseline variant is 
designed to have a similar computational budget to that of the replay 
methods.

4.1.3. Architectures and hyperparameters
Like previous researches (Buzzega et al., 2020; Caccia et al., 2022; 

Chrysakis & Moens, 2023), we use a reduced ResNet-18 network for all 
the datasets above, and all methods are applied to the same backbone. 
This choice enables us to fairly compare various methods, as these 
parameters directly affect the model’s parameter size and the ability 
to classification tasks. Hyperparameters used in the experiments are 
presented in the following.

Learning Rate. The distance parameter shifts in the training process 
is directly affected by the learning rate. So in our experiments, for each 
dataset we set a fixed learning rate. Specifically, for Cifar10, we set the 
learning rate fixed at 0.1, for Cifar100 and MiniImagenet, we set the 
learning rate fixed at 0.01.

Memory Buffer Size. In the context of OCL scenarios, the perfor-
mance of ER-based methods is closely tied to the hyperparameter of 
memory buffer size (MS). To ensure a fair comparison among various 
methods, it is necessary to evaluate their performance across different 
memory buffer sizes. Therefore, on the Cifar10 dataset, we varied 
this hyperparameter across three values: 20, 100, and 500. We con-
ducted comparisons of selected methods under these three different 
settings. Conversely, on the Cifar100/MiniImageNet datasets, we fixed 
this hyperparameter at 500 to emphasize fairness in comparison.

Other Hyperparameters. Following previous studies (Aljundi, 
Belilovsky, et al., 2019; Caccia et al., 2022; Chaudhry, Ranzato, et al., 
2018), for DER++, we set the hyperparameter 𝛼 = 0.1 and 𝛽 = 0.5. The 
way to realizing masking loss for ER-ACE is the same as the author 
proposed in Buzzega et al. (2020). For our PVBF, we set normalization 
hyperparameter 𝛼 = 0.5, 𝛽 = 2.0, and the probability for D-CWR 𝑝 fixed 
at 0.9. A detailed analysis of the sensitivity of the hyperparameter 𝑝 is 
provided in Appendix  D.

4.1.4. Metrics
We utilized average per-task accuracy (ACC↑, higher is better) 

alongside the forgetting ratio (FR↓, lower is better) metric (Chaudhry, 
Dokania, et al., 2018), to assess the continual learning capabilities of 
various algorithm models in OCL scenarios. The ACC metric compre-
hensively assesses the learning capability of algorithmic models in OCL 
scenarios, while the FR metric evaluates their ability to consolidate 
memory during the training process. Let 𝑎𝑖,𝑗 be the model’s accuracy 
on task 𝑖 on the test dataset after being trained on task 𝑗, ACC and FR 
are defined as 

𝐴𝐶𝐶 = 1
𝐾
∑

𝑎𝑖,𝑘 (14)

𝐾 𝑖=1
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Fig. 6. ACC results for long task sequence OCL experiments (PVBF-D: PVBF without D-CWR).
Table 1
Short task sequence experiment results on split Cifar10. We conducted experiments in three scenarios: 𝑀𝑆 = 20, 𝑀𝑆 = 100, 
𝑀𝑆 = 500. All entries are 95%-confidence intervals over 15 runs.
 Method MS=20 MS=100 MS=500

 ACC FR ACC FR ACC FR  
 IID 68.0 ± 1.1 – 68.0 ± 1.1 – 68.0 ± 1.1 –  
 ER 26.5 ± 1.3 50.4 ± 4.2 37.9 ± 1.5 28.1 ± 1.8 46.2 ± 1.7 18.9 ± 3.6 
 iCaRL 40.0 ± 1.1 38.5 ± 1.6 42.4 ± 1.1 32.3 ± 1.5 44.1 ± 1.0 30.6 ± 1.4 
 MIR 28.8 ± 1.4 46.7 ± 2.5 46.7 ± 0.9 18.8 ± 2.5 47.0 ± 2.0 𝟗.𝟏 ± 2.8  
 DER++ 30.8 ± 1.8 33.7 ± 4.3 39.8 ± 1.3 23.3 ± 2.1 47.8 ± 1.6 13.9 ± 2.8 
 ER-ACE 37.7 ± 0.8 28.8 ± 2.7 47.4 ± 1.2 20.0 ± 2.6 53.3 ± 1.4 15.1 ± 1.7 
 AR1* 24.5 ± 1.4 75.9 ± 1.8 38.9 ± 1.8 53.0 ± 2.5 51.6 ± 2.5 36.4 ± 3.7 
 (ours) PVBF w/o D-CWR 37.9 ± 1.0 26.6 ± 2.0 47.1 ± 1.3 19.0 ± 1.7 54.8 ± 1.7 12.7 ± 2.0 
 (ours) PBVF 𝟒𝟏.𝟐 ± 0.8 𝟐𝟒.𝟎 ± 2.0 𝟓𝟎.𝟖 ± 1.4 𝟏𝟖.𝟏 ± 1.8 𝟓𝟗.𝟐 ± 1.8 10.6 ± 1.0 
𝐹𝑅 = 1
𝐾 − 1

𝐾−1
∑

𝑖=1
max

𝑘∈{1...𝐾}
𝑎𝑖,𝑘 − 𝑎𝑖,𝐾 (15)

4.1.5. Short task sequence OCL experiments
First as a standard short task sequence setting (Caccia et al., 2022), 

we apply our methods on Cifar10 datasets, along with the baselines. 
The results are shown in Table  1 and Fig.  5.

In experiments on Cifar10 under standard OCL scenarios, varying 
memory buffer sizes reveal distinct impacts on performance metrics. 
The IID method reveals the upper bound of learning accuracy for 
network models on this dataset (where no forgetting issue exists). As in 
Table  1, In scenarios with 𝑀𝑆=20, 𝑀𝑆=100, and 𝑀𝑆=500, our PBVF 
demonstrates a significant accuracy advantage over other baselines, 
achieving an average 39.2% improvement in ACC compared to the ER 
method. Furthermore, our approach is able to further reduce the FR 
metric based on ER-ACE and AR1*, and has the lowest FR metrics 
in 𝑀𝑆 = 20 and 𝑀𝑆 = 100 settings, demonstrating more effective 
consolidating memory of past knowledge.

The results of the short task sequence experiments not only demon-
strate that our PVBF exhibits strong adaptability in this setting, but also 
validate our hypothesis regarding the parameter variation imbalance. 
By comparing the PVBF without D-CWR to the ER-ACE method, we 
observe that the PVBF without D-CWR consistently achieves better 
performance across 𝑀𝑆 = 20, and 𝑀𝑆 = 500 settings, and lower FR in 
all settings, indicating that the E&C strategy alleviates the correlation-
induced imbalance. Furthermore, when the D-CWR strategy is applied, 
the PVBF framework shows significantly lower FR and higher ACC, 
which can be attributed to the severe layer-wise imbalance in the 
short-task sequence OCL setting, and our D-CWR strategy effectively 
mitigates this imbalance.

4.1.6. Long task sequence OCL experiments
Similar experiments are conducted with the split Cifar100 and split 

MiniImagenet dataset with 20 tasks. The results are shown in Table  2 
and Fig.  6.
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Table 2
Long task sequence experiment results on split Cifar100 and split MiniImagenet. All 
entries are 95%-confidence intervals over 15 runs.
 Method Cifar100 MiniImagenet

 ACC FR ACC FR  
 IID 28.3 ± 0.9 – 24.3 ± 1.6 –  
 ER 17.5 ± 0.5 50.4 ± 0.7 18.1 ± 0.6 40.8 ± 1.1 
 iCaRL 17.1 ± 0.3 22.1 ± 0.3 16.8 ± 0.3 15.8 ± 0.6 
 MIR 18.1 ± 0.5 47.9 ± 0.7 18.9 ± 0.6 38.3 ± 0.9 
 DER++ 10.9 ± 0.6 61.7 ± 0.7 10.3 ± 0.7 51.6 ± 1.0 
 ER-ACE 24.0 ± 0.7 𝟏𝟎.𝟏 ± 0.7 23.2 ± 0.7 𝟖.𝟗 ± 0.8  
 AR1* 14.6 ± 0.4 58.1 ± 0.7 15.7 ± 0.5 47.9 ± 0.6 
 (ours) PVBF w/o D-CWR 𝟐𝟓.𝟖 ± 0.7 10.3 ± 0.8 𝟐𝟑.𝟕 ± 0.8 9.2 ± 0.9  
 (ours) PVBF 21.7 ± 0.7 11.4 ± 0.6 20.9 ± 0.4 9.3 ± 0.5  

The experimental results demonstrate that our PVBF without D-
CWR outperforms all baseline methods on both the Cifar100 and Mini-
imagenet datasets. As in Table  2, particularly on the split Cifar100 
dataset, the PVBF without D-CWR shows a 47% improvement in ACC 
over the ER method, approaching the model accuracy upper bound 
indicated by the IID method. On the split Miniimagenet dataset, the 
PVBF without D-CWR also performs well, showing improvements over 
the previously best-performing ER-ACE method. Additionally, the FR 
metric for the PVBF without D-CWR is relatively low in both datasets, 
very close to the best ER-ACE results, but for the ACC metric, PVBF 
without D-CWR has a clear advantage. This confirms that the evalu-
ation of parameter importance and overall gradient correction in the 
PVBF without D-CWR are effective for long task sequences in the OCL 
scenario.

The OCL settings with long task sequences reveal significant dif-
ferences in parameter variation imbalance compared to those with 
short task sequences. D-CWR may reduce the performance of PVBF, 
and the AR1* method, which only uses output classifier optimiza-
tion, also performs poorly. We hypothesize that this is due to the 
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Fig. 7. Average relative changes in parameters across different layers in a long task sequence OCL experiment on MiniImagenet applying PVBF.
Table 3
Ablation experiment results on split Cifar10. All entries are 95%-confidence intervals 
over 15 runs.
 PVBF w/o E&C D-CWR ACE –  
 ACC 55.9 ± 1.1 54.8 ± 1.7 51.3 ± 2.7 59.2 ± 1.8 
 FR 13.3 ± 1.6 12.7 ± 2.0 41.8 ± 3.1 10.6 ± 1.0 

increased complexity and more frequent changes in tasks within the 
long task sequence scenario, which requires the output classifier to 
update more rapidly. In this scenario, as illustrated in Fig.  7, the 
relative changes in the parameters of the output classifier (linear layer) 
gradually decrease as the number of tasks increases, ultimately leading 
to a diminished effect of layer-wise imbalance. In other words, in these 
settings, correlation-induced imbalance is the primary contributor to 
parameter variation imbalance. Our PVBF without D-CWR primarily 
focuses on optimizing parameter dependency imbalance, which allows 
it to achieve performance close to that of the IID method.

4.1.7. Ablation study
Based on the results of the ablation study presented in Table  3, sev-

eral key observations can be made regarding the performance of PVBF 
on the split Cifar10 dataset. The results of the ablation experiments 
demonstrate significant impacts of removing different modules on the 
PVBF. Removing the E&C and D-CWR modules decreased the ACC from 
59.2% to 55.9% and 54.8%, indicating their substantial contributions 
to accuracy. Simultaneously, the FR values for these modules increased 
from 10.6% to 13.3% and 12.7%, illustrating their effectiveness in 
reducing forgetting. This implies that it is essential to correct prediction 
bias both holistically and specifically in the output classifier. Removing 
the ACE module caused the ACC to drop from 59.2% to 51.3%, and FR 
to increase from 10.6 to 41.8, highlighting the importance of combining 
ACE into PVBF to mitigate catastrophic forgetting.

4.1.8. Random task order experiments
In dynamic learning scenario, task execution orders may be adjusted 

in real-time due to external environmental factors, introducing uncer-
tainty into the OCL process. Thus, we further conducted experiments to 
evaluate the stability and effectiveness of the PVBF framework under 
conditions of randomized task order.

To simulate this scenario, we performed experiments on the split Ci-
far10 dataset by varying MS and randomly shuffling the task sequence 
at each run. We evaluated the model using ACC and FR as performance 
metrics. Each configuration was executed 15 times to ensure statistical 
robustness.

Table  4 and Fig.  8 report the results under three settings: 𝑀𝑆 = 20, 
𝑀𝑆 = 100, and 𝑀𝑆 = 500. The results indicate that the proposed 
PVBF method consistently achieves the highest average accuracy across 
all memory settings and maintains a lower forgetting rate compared 
to other strong baselines, including ER, iCaRL, DER++, and ER-ACE. 
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Furthermore, even without the D-CWR module, the ablated version 
(PVBF w/o D-CWR) remains competitive, indicating that our parameter 
variation balancing strategy is inherently robust to varying task orders.

Furthermore, as shown in Tables  1 and 4, one of the key challenges 
posed by random task orders in OCL lies in their significant impact 
under low replay buffer settings (e.g., 𝑀𝑆 = 20). In such cases, the 
uncertainty in task sequence tends to result in a higher FR, indicating 
that the model forgets a larger portion of previously learned knowl-
edge, which in turn leads to a notable drop in classification accuracy. 
Under this challenging condition, our PVBF framework consistently 
achieves the lowest FR and the highest ACC among all compared 
methods, demonstrating strong stability and adaptability in learning 
from uncertain task sequences.

4.2. Offline CL experiments

To compare with more ER-based CL methods designed for offline 
scenarios and to further validate the stable performance of PVBF in 
more CL settings, we applied PVBF and other baselines to the same 
offline CL setting. The offline setting typically includes two specific 
learning modes: class-incremental (class-IL) and task-incremental (task-
IL). The primary difference between these two learning modes lies in 
the evaluation process. In the class-IL learning mode, task identifiers are 
not provided to the model, and the classifier must accurately predict the 
class of validation samples among all seen classes. In contrast, for the 
task-IL learning mode, task identifiers are provided to the model, and 
the classifier only needs to classify samples within the corresponding 
task. In the offline CL setting, we use the same evaluation metrics as in 
the OCL scenario.

4.2.1. Datasets and setup
In reference to the standard research on offline continual learning 

(CL) in Buzzega et al. (2020), we conduct experiments on the widely 
used Split-Cifar10 dataset, addressing both class-IL and task-iL sce-
narios. These two scenarios respectively assess the model’s memory 
capabilities for the entire dataset and for individual tasks, making them 
highly representative in the context of offline CL. Similar to the OCL 
scenario, we divide the Split-Cifar10 dataset into five tasks, with each 
task requiring the model to classify samples from two distinct classes.

4.2.2. Baselines
Regarding the selection of baselines, we introduce seven existing 

ER-based methods from offline CL experiments (ER (Riemer et al., 
2018), GEM (Lopez-Paz & Ranzato, 2017), iCaRL (Rebuffi et al., 2017),
FDR (Benjamin, Rolnick, & Kording, 2019), GSS (Aljundi, Lin, Goujaud, 
& Bengio, 2019), HAL (Chaudhry, Gordo, Dokania, Torr, & Lopez-
Paz, 2021), and DER++), as well as ER-ACE, which has shown strong 
performance in OCL scenarios. Similar to the OCL scenario, for the 
nine methods, including PVBF, we employ reservoir sampling for data 
sampling. To ensure a fair comparison across methods, we set the 
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Table 4
Experimental results of short task sequence with random task orders on split Cifar10. We conducted experiments in three 
scenarios: 𝑀𝑆 = 20, 𝑀𝑆 = 100, 𝑀𝑆 = 500. All entries are 95%-confidence intervals over 15 runs.
 Method MS=20 MS=100 MS=500

 ACC FR ACC FR ACC FR  
 ER 26.0 ± 1.3 57.9 ± 3.4 40.8 ± 2.1 28.7 ± 4.6 46.7 ± 4.1 18.7 ± 5.6 
 iCaRL 38.6 ± 2.1 40.7 ± 2.9 42.2 ± 1.0 30.7 ± 1.5 43.9 ± 1.5 30.3 ± 2.2 
 MIR 26.5 ± 1.4 53.4 ± 3.7 46.1 ± 2.0 22.5 ± 2.3 48.7 ± 2.2 𝟏𝟎.𝟓 ± 1.9 
 DER++ 32.0 ± 2.4 45.3 ± 7.0 41.5 ± 2.9 𝟏𝟗.𝟑 ± 5.1 46.8 ± 3.5 15.8 ± 4.1 
 ER-ACE 36.7 ± 1.8 39.8 ± 3.0 47.1 ± 1.8 23.9 ± 1.8 54.7 ± 1.9 16.2 ± 2.5 
 AR1* 25.3 ± 1.2 75.5 ± 2.0 39.4 ± 2.5 53.2 ± 3.7 53.1 ± 2.3 37.1 ± 3.0 
 (ours) PVBF w/o D-CWR 36.9 ± 1.2 37.1 ± 2.7 46.8 ± 1.6 24.4 ± 2.5 56.6 ± 2.3 14.7 ± 2.8 
 (ours) PVBF 𝟑𝟗.𝟎 ± 0.8 𝟑𝟓.𝟕 ± 2.0 𝟓𝟎.𝟖 ± 0.9 24.3 ± 2.8 𝟔𝟏.𝟏 ± 1.1 13.5 ± 1.5 
Fig. 8. ACC results of random task order experiments.
Table 5
Offline experiment results on split Cifar10. 𝑀𝑆 represents the memory buffer size. We conducted experiments in three 
scenarios: 𝑀𝑆 = 200, 𝑀𝑆 = 500, 𝑀𝑆 = 5120. Results by SGD, ER, GEM, iCaRL, FDR, GSS, HAL, and DER++ are cited from 
Buzzega et al. (2020), all other entries are 95%-confidence intervals over 15 runs.
 Method MS=200 MS=500 MS=5120

 ACC FR ACC FR ACC FR  
 Class-IL
 SGD 19.62 ± 0.05 96.39 ± 0.12 19.62 ± 0.05 96.39 ± 0.12 19.62 ± 0.05 96.39 ± 0.12 
 ER 44.79 ± 1.86 61.24 ± 2.62 57.74 ± 0.27 45.35 ± 0.07 82.57 ± 0.52 13.99 ± 1.12 
 GEM 25.54 ± 0.76 82.61 ± 1.60 26.20 ± 2.26 74.31 ± 4.62 25.26 ± 3.46 75.27 ± 4.41 
 iCaRL 49.02 ± 3.20 28.72 ± 0.49 47.55 ± 3.95 25.71 ± 1.10 55.07 ± 1.55 24.94 ± 0.14 
 FDR 30.91 ± 2.74 86.40 ± 0.67 28.71 ± 3.23 85.62 ± 0.36 19.70 ± 0.07 96.64 ± 0.19 
 GSS 39.07 ± 5.59 75.25 ± 4.07 49.73 ± 4.78 62.88 ± 2.67 67.27 ± 4.27 58.11 ± 9.12 
 HAL 32.36 ± 2.70 69.11 ± 4.21 41.79 ± 4.46 62.21 ± 4.34 59.12 ± 4.41 27.19 ± 7.53 
 DER++ 64.88 ± 1.17 32.59 ± 2.32 72.70 ± 1.36 22.38 ± 4.41 85.24 ± 0.49 7.27 ± 0.84  
 ER-ACE 63.48 ± 1.24 16.43 ± 1.65 69.95 ± 1.18 12.58 ± 0.79 83.06 ± 0.62 6.14 ± 0.88  
 (ours) PBVF 𝟔𝟓.𝟐𝟕 ± 1.18 22.11 ± 1.95 71.30 ± 1.01 14.49 ± 1.25 83.45 ± 0.67 6.12 ± 0.61  
 Task-IL
 SGD 61.02 ± 3.33 46.24 ± 2.12 61.02 ± 3.33 46.24 ± 2.12 61.02 ± 3.33 46.24 ± 2.12 
 ER 91.19 ± 0.94 7.08 ± 0.64 93.61 ± 0.27 3.54 ± 0.35 96.98 ± 0.17 0.27 ± 0.06  
 GEM 90.44 ± 0.94 9.27 ± 2.07 92.16 ± 0.69 9.12 ± 0.21 25.26 ± 3.46 6.91 ± 2.33  
 iCaRL 88.99 ± 2.13 2.63 ± 3.48 88.22 ± 2.62 2.66 ± 2.47 92.23 ± 0.84 1.59 ± 0.57  
 FDR 91.01 ± 0.68 7.36 ± 0.03 93.29 ± 0.59 4.80 ± 0.00 94.32 ± 0.97 1.93 ± 0.48  
 GSS 88.80 ± 2.89 8.56 ± 1.78 91.02 ± 1.57 7.73 ± 3.99 94.19 ± 1.15 7.71 ± 2.31  
 HAL 82.51 ± 3.20 12.26 ± 0.02 84.54 ± 2.36 5.41 ± 1.10 88.51 ± 3.32 5.21 ± 0.50  
 DER++ 91.92 ± 0.60 5.16 ± 0.21 93.88 ± 0.50 4.66 ± 1.15 96.12 ± 0.21 1.18 ± 0.19  
 ER-ACE 92.74 ± 1.18 5.59 ± 0.90 94.35 ± 0.92 3.58 ± 0.72 97.25 ± 0.48 0.78 ± 0.16  
 (ours) PBVF 𝟗𝟑.𝟗𝟔 ± 1.06 4.80 ± 1.03 𝟗𝟓.𝟔𝟐 ± 0.71 2.68 ± 0.49 97.12 ± 0.50 0.76 ± 0.12  
11 
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Fig. A.9. Neuron counts for different relative changes 𝛿′𝑚,𝑘 (ZS method).
Fig. A.10. Average relative changes in parameters across different layers (ZS method).
Fig. A.11. Neuron counts for different relative changes 𝛿′𝑚,𝑘 (RS method).
same memory buffer size for all methods within the same experimental 
setting. Simultaneously, to highlight the memory advantages offered by 
continual learning algorithms, we also include experimental results for 
the SGD method. This approach does not utilize any experience replay, 
and instead performs standard stochastic gradient descent training on 
each task sequentially, with the same number of training epochs as the 
other algorithms. 

4.2.3. Training
During training, as we adopted part of the offline CL experimental 

data from prior work, we ensured consistency across all conditions that 
influence model performance. Specifically, we adhered to the follow-
ing characteristics of the Mammoth experiment framework (Boschini, 
Bonicelli, Buzzega, Porrello, & Calderara, 2022), which is designed 
for offline CL experiments: (i) For all training processes, we used the 
same SGD optimizer with a fixed batch size of 32 and fixed epochs 
50; (ii) All methods were applied to a common, unpretrained ResNet-
18 based backbone; (iii) Experiments were conducted across three 
different memory buffer sizes: 200, 500, and 5120. For the seven classic 
baselines (ER, GEM, iCaRL, FDR, GSS, HAL, and DER++), we refer-
enced their optimal performance results under previously validated 
12 
hyperparameter settings for this configuration. For ER-ACE and PVBF, 
we conducted experiments with a fixed learning rate of 0.03. The 
hyperparameter settings for PVBF were consistent with those used in 
the OCL setting, and all experimental results are fully reproducible.

4.2.4. Results
As shown in Table  5, experiments conducted in the offline CL 

settings demonstrate that PVBF exhibits stable performance across both 
class-IL and task-IL scenarios. In the class-IL setting, PVBF achieves 
the highest ACC and the second-best FR when the memory buffer size 
𝑀𝑆 = 200. For 𝑀𝑆 = 500 and 𝑀𝑆 = 5120, PVBF consistently shows 
the second-highest ACC and either the lowest or second-lowest FR. In 
the task-IL scenario, PVBF achieves optimal performance for 𝑀𝑆 = 200
and 𝑀𝑆 = 500, surpassing all baselines. For 𝑀𝑆 = 5120, PVBF’s 
performance is on par with ER-ACE. Overall, across both scenarios, 
PVBF demonstrates a competitive advantage over existing state-of-the-
art methods in the offline CL setting. Notably, particularly in settings 
with a small memory buffer size and in task-IL scenarios, PVBF retains 
a clear advantage over DER++, which also demonstrates excellent 
performance in the offline CL setting.
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Fig. A.12. Average relative changes in parameters across different layers in average (RS method).
4.2.5. Analysis
In the offline CL setting, compared to the OCL setting, the model is 

able to undergo more extensive training, which alleviates the issue of 
parameter variation imbalance. Particularly, in the case of 𝑀𝑆 = 5120, 
the model can store a sufficient number of samples during training, 
allowing it to effectively revisit knowledge from previous tasks. In 
this scenario, the issue of parameter variation imbalance is mitigated 
under the conditions of ample sample and training data. As a result, 
the experimental outcomes of ER-based methods eventually converge 
with those of the ER method. When the number of samples that the 
model can store is smaller, the issue of parameter variation imbalance 
becomes more pronounced. In such cases, PVBF can alleviate this 
issue to some extent, leading to better performance compared to other 
methods. In the task-IL scenario, the correlation-induced imbalance 
correction strategy employed by PVBF enables the model to retain 
knowledge of specific tasks more vividly, which contributes to PVBF’s 
superior performance.

5. Conclusion

Mitigating catastrophic forgetting in OCL requires addressing the 
prediction bias caused by parameter variation imbalance. To solve this 
issue, this paper proposes a Parameter Variation Balancing Framework 
(PVBF), which mitigates the correlation-induced imbalance and layer-
wise imbalance respectively. The paper validates PVBF through classifi-
cation experiments on both short and long task sequence OCL settings, 
as well as offline settings. The results show that PVBF achieves an 
average accuracy improvement of 31%–47% over the ER method. On 
the MiniImageNet dataset, it attains 97.5% of the IID method’s accuracy 
using only 500 replay samples. In offline CL settings, PVBF consis-
tently outperforms classical CL methods, demonstrating its significant 
advantages.
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Table B.6
Short task sequence experiment results on split Cifar10 using PVBF with different 
standardization methods. All entries are 95%-confidence intervals over 15 runs.
 Method MS=20 MS=100 MS=500

 ACC FR ACC FR ACC FR  
 PBVF-RR 41.2 ± 0.8 𝟐𝟒.𝟎 ± 2.0 50.8 ± 1.4 18.1 ± 1.8 𝟓𝟗.𝟐 ± 1.8 10.6 ± 1.0  
 PBVF-ZS 40.4 ± 1.6 24.4 ± 2.0 𝟓𝟏.𝟔 ± 1.0 𝟏𝟒.𝟖 ± 1.2 59.0 ± 2.1 10.1 ± 2.5 
 PBVF-RS 𝟒𝟐.𝟎 ± 1.1 24.2 ± 2.2 49.5 ± 1.6 18.2 ± 1.8 56.3 ± 1.8 13.3 ± 1.2  
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Appendix A. Relative changes analysis of different standardiza-
tion methods

We also use the ZS and RS method for obtaining 𝛿′𝑚,𝑘, we recorded 
the relative changes at the end of 1 ∼ 4 task in a sequence of short tasks 
(a total of 5 tasks) during continual training on Cifar10 (Krizhevsky 
et al., 2009) with ER method (Chaudhry et al., 2019) using a backbone 
of reduced-Resnet18 (Aljundi, Belilovsky, et al., 2019).

From the results in Fig.  A.9 using ZS normalization, we observe that 
in all tasks, 66%–68% of the parameters exhibit relative changes below 
the mean, and over 90% of the parameters have relative changes within 
one standard deviation. This further supports our hypothesis regarding 
correlation-induced imbalance, where only a small subset of parameters 
show a strong correlation within a task. Similarly, the results in Fig. 
A.11 using RS normalization corroborate this observation, with the 
number of parameters exhibiting relative changes greater than 2 being 
less than 7% after normalization.

Similarly, the results shown in Fig.  A.10, which present the average 
relative changes of parameters at different layers using ZS normaliza-
tion, and those in Fig.  A.12, which show the corresponding results 
with RS normalization, further support our hypothesis regarding layer-
wise imbalance. In both cases, the final linear layer (i.e., the out-
put classifier) exhibits significantly higher average relative changes in 
parameters compared to the adjacent layers.

Appendix B. OCL experiments results of different standardization 
methods

In this section, we present the experimental results of the PVBF 
framework under different standardization methods. The results are 
evaluated across multiple task sequences with varying sequence lengths 
and datasets. We report the ACC and FR for each method.
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Fig. C.13. Time consuming Results of different methods applying on split cifar10.
Fig. D.14. The hyperparameter sensitivity heatmap for the probability parameter 𝑝 in 
the D-CWR method, where the baseline value of 𝑝 is set to 0.55. Each cell denotes the 
relative change in ACC corresponding to 𝑝 = 0.55+0.05×column_index+0.01×row_index, 
computed as the deviation from the ACC obtained under the baseline setting of 𝑝 = 0.90.

Table B.7
Long task sequence experiment results on split Cifar100 and split MiniImagenet using 
PVBF with different standardization methods. All entries are 95%-confidence intervals 
over 15 runs.
 Method Cifar100 MiniImagenet

ACC FR ACC FR  
PVBF-RR 21.7 ± 0.7 11.4 ± 0.6 20.9 ± 0.4 9.3 ± 0.5  
PVBF-ZS 22.4 ± 0.5 11.0 ± 0.5 20.8 ± 0.5 10.4 ± 0.7 
PVBF-RS 22.8 ± 0.7 11.2 ± 0.6 21.8 ± 0.5 9.8 ± 0.5  

Short Task Sequence Results. Table  B.6 summarizes the results 
or the short task sequence experiment conducted on the split Cifar10 
ataset. The results highlight the performance of PVBF with three stan-
ardization methods: RR, ZS, and RS. Notably, the PBVF-RR method 
xhibits the highest ACC when 𝑀𝑆 = 500 and lowest FR when 𝑀𝑆 =
0. The PBVF-ZS method achieves the best ACC at 51.6 ±1.0 when 
𝑆 = 100, and lowest FR when 𝑀𝑆 = 100 and 𝑀𝑆 = 500. The 
VBF-RS method achieves best ACC when 𝑀𝑆 = 20. From the results 
f the short task sequence, both PVBF-RR and PVBF-ZS demonstrate 
omparable performance, outperforming PVBF-RS.
Long Task Sequence Results. Table  B.7 presents the results from 

he long task sequence experiment conducted on the split Cifar100 and 
plit MiniImagenet datasets. Again, we evaluate the performance of 
VBF with three standardization methods: RR, ZS, and RS. In the case 
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of Cifar100, PVBF-RS achieves the highest ACC of 22.8, outperforming 
both PVBF-RR and PVBF-ZS, and PVBF-ZS achieves the lowest FR. On 
the MiniImagenet dataset, PVBF-RS achieves the highest ACC of 21.8, 
while PVBF-RR shows a lower forgetting rate of 9.8. In contrast to 
the short task sequence results, PVBF-RS outperforms the other two 
methods in the long task sequence.

Considering both OCL scenarios, all three standardization meth-
ods exhibit similar performance on the OCL task. From a practical 
perspective, RR has the lowest computational complexity among the 
three methods. Therefore, we primarily use the RR method in the main 
discussions.

Appendix C. Time consuming

In the context of online continual learning (OCL), evaluating the 
time consumption of different methods is crucial, as maintaining a low 
computational cost allows models to adapt more rapidly to dynamically 
evolving data streams. To rigorously assess the runtime efficiency of 
each method, we conducted time consumption experiments under a 
unified hardware configuration (CPU: 16 vCPUs, Intel(R) Xeon(R) Gold 
6430; GPU: NVIDIA RTX 4090 with 24 GB VRAM) and on the same 
dataset (split Cifar10). The results are shown in Fig.  C.13.

Time consuming of ParamCC. For ParamCC, since computations 
are only required at task transitions, it does not affect the training 
efficiency of the model. We independently measured the time cost 
of this computation process, and found that the time consumed per 
execution is less than 1 ms, which is negligible compared to the model’s 
overall training time.

Time consuming of PVBF. As demonstrated by the experimental 
results, PVBF exhibits comparable computational time with compar-
ative approaches, introducing less than 2 s of additional overhead 
compared to ER. Through systematic ablation experiments on E&C and 
D-CWR components, we observe that the time complexity of PVBF 
primarily stems from the D-CWR module, as removing this component 
reduces its computational time to a level comparable with ER-ACE. This 
indicates that the computational complexity introduced by the E&C 
method remains strictly bounded. Furthermore, the PVBF-E&C vari-
ant (containing only D-CWR and paramCC components) demonstrates 
merely 0.4 s of additional computation time compared to ER-ACE, con-
firming that its temporal overhead remains within practical acceptance 
thresholds for real-world deployment.

Appendix D. Hyperparameter sensitivity

For the probabilistic hyperparameter 𝑝 in D-CWR, its value signifi-
cantly impacts the PVBF model’s overall ability to mitigate forgetting. 
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To determine the optimal value, we conducted a hyperparameter sen-
sitivity analysis by testing 𝑝 over the range of 0.61 to 1 with 0.01 
increments. This evaluation was performed on split Cifar10 under a 
short-task sequential OCL scenario with a fixed memory size (MS) of 
500. As illustrated in Fig.  D.14, the model achieves stable ACCs when 𝑝
ranges between 0.86 and 0.90. Based on these findings, we empirically 
set 𝑝 = 0.9 for subsequent experiments in this study.
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