
Neural Networks 192 (2025) 107823

A
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Full Length Article

PVBF: A framework for mitigating parameter variation imbalance in online

continual learning
Zelin Tao a , Hao Deng a,d ,∗, Mingqing Liu b , Lijun Zhang c , Shengjie Zhao a,d
a School of Computer Science and Technology, Tongji University, Shanghai, 201804, China
b College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, China
c National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China
d Engineering Research Center of Key Software Technologies for Smart City Perception and Planning, Ministry of Education, Shanghai, 201804, China

A R T I C L E I N F O

Keywords:
Online continual learning
Catastrophic forgetting

 A B S T R A C T

Online continual learning (OCL), which enables AI systems to adaptively learn from non-stationary data
streams, is commonly achieved using experience replay (ER)-based methods that retain knowledge by replaying
stored past during training. However, these methods face challenges of prediction bias, stemming from
deviations in parameter update directions during task transitions. This paper identifies parameter variation
imbalance as a critical factor contributing to prediction bias in ER-based OCL. Specifically, using the proposed
parameter variation evaluation method, we highlight two types of imbalance: correlation-induced imbalance,
where certain parameters are disproportionately updated across tasks, and layer-wise imbalance, where output
layer parameters update faster than those in preceding layers. To mitigate the above imbalances, we propose
the Parameter Variation Balancing Framework (PVBF), which incorporates: (1) a novel method to compute
parameter correlations with previous tasks based on parameter variations, (2) an encourage-and-consolidate
(E&C) method utilizing parameter correlations to perform gradient adjustments across all parameters during
training, (3) a dual-layer copy weights with reinit (D-CWR) strategy to slowly update output layer parameters
for frequently occurring sample categories. Experiments on short and long task sequences demonstrate that
PVBF significantly reduces prediction bias and improves OCL performance, achieving up to 47% higher
accuracy compared to existing ER-based methods.
1. Introduction

Learning constitutes the cornerstone of intelligent systems, enabling
their adaptation to dynamic environments. Humans exemplify this
adaptability through their ability to continuously acquire and inte-
grate new knowledge while retaining prior experiences (Wang, Zhang,
Su, & Zhu, 2024). In contrast, artificial intelligence systems, particu-
larly those based on deep neural networks (DNNs), face a significant
limitation known as catastrophic forgetting, where the acquisition of
new information leads to the erosion of previously learned knowl-
edge (Van de Ven & Tolias, 2019), thereby hindering their capacity
for sequential learning. To mitigate catastrophic forgetting and en-
able human-like learning capabilities, continual learning (CL) methods
have been extensively studied (Chaudhry, Dokania, Ajanthan, & Torr,
2018; Kirkpatrick et al., 2017; Li & Hoiem, 2017). Due to privacy
concerns or resource constraints (Mai et al., 2022), training data in
more realistic online environments is presented as dynamic, one-pass
streaming data (Soutif-Cormerais et al., 2023; Wang et al., 2024).

∗ Corresponding author at: School of Computer Science and Technology, Tongji University, Shanghai, 201804, China.
E-mail address: denghao1984@tongji.edu.cn (H. Deng).

Thus, CL models need to not only address catastrophic forgetting but
also tackle the challenge of insufficient training, which can lead to
prediction bias. Existing effective methods primarily employ strategies
such as replaying past samples or representations, commonly referred
to as experience replay (ER)-based methods (Chaudhry et al., 2019;
Isele & Cosgun, 2018; Pellegrini, Graffieti, Lomonaco, & Maltoni, 2020;
Rebuffi, Kolesnikov, Sperl, & Lampert, 2017). In recent years, research
on ER-based methods has been considered crucial for enabling DNNs
to continuously acquire new knowledge in dynamic and non-stationary
sequential tasks. However, existing ER-based methods still suffer from
significant prediction bias when applied to online continual learning
(OCL) in sequential tasks. To address this issue, we propose an ER-
based framework with bias-correction strategies to improve the OCL
performance of the models.

Prediction bias is strongly linked to parameter variations during
training (Sun, 2019). In OCL scenarios, the non-stationary nature of
sequential tasks poses additional challenges, leading to more intricate
https://doi.org/10.1016/j.neunet.2025.107823
Received 21 January 2025; Received in revised form 19 May 2025; Accepted 29 Ju
vailable online 14 July 2025
893-6080/© 2025 Elsevier Ltd. All rights are reserved, including those for text and
ne 2025

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
https://orcid.org/0009-0009-5449-8987
https://orcid.org/0000-0002-4627-9110
https://orcid.org/0000-0002-5658-7811
https://orcid.org/0000-0002-5138-3182
https://orcid.org/0000-0002-4301-394X
mailto:denghao1984@tongji.edu.cn
https://doi.org/10.1016/j.neunet.2025.107823
https://doi.org/10.1016/j.neunet.2025.107823
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2025.107823&domain=pdf

Z. Tao et al. Neural Networks 192 (2025) 107823
Fig. 1. Schematic diagram of parameter variation imbalance in OCL. An exemplary four-layer network is trained through a data stream with three tasks. The shading of the neurons
indicates the magnitude of their variations during the training of the task, with darker colors representing greater variations. The blue dashed boxes present the correlation-induced
imbalance, where a small subset of parameters exhibits significantly larger variations during certain tasks. The red dashed boxes highlight the issue of layer-wise imbalance, where
the average variation of the final linear layer in the network is significantly higher than that of adjacent layers.
and uneven parameter variations compared to conventional training
settings (Castro, Marin-Jimenez, Guil, Schmid, & Alahari, 2018). Ex-
isting ER-based methods primarily aim to mitigate task interference
or preserve learned knowledge (Buzzega, Boschini, Porrello, Abati, &
Calderara, 2020; Caccia et al., 2022), but they lack explicit evaluation
of parameter variations. As a result, these methods fail to effectively
link parameter updates with task-specific requirements, limiting their
ability to guide precise gradient adjustments and address prediction
bias. In this work, as illustrated in Fig. 1, we investigate the issue of
parameter variation imbalance in OCL and identify two key phenom-
ena. First, during training on OCL tasks, subsets of parameters undergo
disproportionately large variations due to their strong correlations
with task-specific memorization. We term this the correlation-induced
imbalance, where these parameters are improperly optimized for indi-
vidual tasks, leading to uneven learning and interference across tasks.
Second, the parameters of the output classifier exhibit significantly
larger variations compared to adjacent layers, an issue we denote as
the layer-wise imbalance. Our findings highlight that these imbalances,
arising from uneven gradient updates across parameters, are critical
contributors to prediction bias in OCL scenarios and underscore the
need for systematic investigations into these dynamics.

For the correlation-induced imbalance issue, several CL approaches
have investigated it, particularly from the perspective of parameter
isolation. These methods suggest that different parameters of neural
networks exhibit varying levels of correlation for memorizing previous
tasks (Fernando et al., 2017; Mallya & Lazebnik, 2018). With CL
parameter isolation methods, masks are typically used to freeze or
adjust parameters closely related to previous learning tasks (Hurtado,
Raymond, & Soto, 2021; Mallya, Davis, & Lazebnik, 2018), demon-
strating significant effectiveness in improving overall model accuracy.
However, these methods require allocating distinct sets of parameters
for each task, leading to increased storage consumption as the num-
ber of tasks grows, which makes them less suitable for the dynamic,
non-stationary sequence tasks targeted by OCL. In contrast, ER-based
methods integrate new and old knowledge by mixing input samples to
correct the overall parameter variation direction, effectively mitigating
prediction bias while maintaining relatively low resource consump-
tion. However, parameter updates in ER-based OCL methods may still
deviate from the optimal direction during task switches due to the non-
independent and identically distributed (IID) nature of the learning
samples. One of the underlying causes is the insufficient understanding
of the correlation between parameter variations and previous task
memory. Existing work lacks in-depth investigation of identifying cru-
cial parameters closely related to specific tasks and developing effective
strategies to prevent these parameters from being improperly updated.

For the layer-wise imbalance issue, it stems from the observation
that during the short task sequence OCL training process, parameters
2
in the output classifier, i.e., the output layer parameters, tend to update
more rapidly compared to other parameters (Chrysakis & Moens, 2023).
This phenomenon can lead to a significant imbalance in parameter
variations which further leads to prediction bias in the model (Wu
et al., 2019). Existing research primarily focuses on improving the
output layer individually based on experience replay (Pellegrini et al.,
2020), e.g., adding a bias correction layer after the output layer (Wu
et al., 2019), using a surrogate classifier instead of the output layer
during training (Chrysakis & Moens, 2023), and developing unique
update strategies for the output layer (Lomonaco & Maltoni, 2017).
For instance, CWR* is a commonly adopted strategy for prediction bias
correction by performing frequency-based magnitude adjustment in the
output layer (Lomonaco, Maltoni, Pellegrini, et al., 2020). However,
the first two methods inevitably increase the network complexity and
the associated training costs, while the latter may introduce additional
time expenditure and lead to suboptimal results. Designing an effective
update strategy for the output layer that better adapts to dynamically
non-stationary tasks remains a challenge.

In this paper, we propose a Parameter Variation Balancing Frame-
work (PVBF), which updates overall model parameters and output
layer parameters at different stages to address the above two issues in
OCL. To mitigate the correlation-induced imbalance, PVBF introduces
Parameter Correlation Calculation (ParamCC) to quantify the corre-
lation between each parameter and previous tasks. Building on this
correlation measure, we propose Encourage and Consolidate (E&C),
a strategy that assigns adaptive gradient descent coefficients to pa-
rameters. This approach encourages the network to rapidly update
parameters with low correlation to previous tasks while consolidating
the memory of parameters with high correlation, thereby mitigating
the prediction bias caused by the correlation-induced imbalance. To
tackle layer-wise imbalance, we propose Dual-layer Copy Weights with
Reinit (D-CWR), an improvement over the CWR* strategy. Inspired
by human memory mechanisms (sensory memory, short-term memory,
and long-term memory), D-CWR employs a two-stage consolidation
process (Nairne & Neath, 2003), which can effectively mitigate the
prediction bias caused by the output classifier in short task sequence
OCL scenarios. The main contributions of this paper can be summarized
as follows.

∙ It provides an evaluation method of parameter variations by
capturing parameters’ relative changes during training. On this
basis, we identify parameter variation imbalance in OCL through
two aspects: correlation-induced imbalance and layer-wise imbal-
ance, which provides prerequisites for optimized learning strategy
design.

∙ It proposes a two-phase approach to mitigate correlation-induced
imbalance at the overall parameter level of neural networks.

Z. Tao et al. Neural Networks 192 (2025) 107823
First, Parameter Correlation Calculate (ParamCC) quantifies the
correlation between parameter variations and the memory of
previously learned tasks. Then, Encourage and Consolidate (E&C)
strategy adjusts gradients by considering correlations as divisors
to fine-tune the parameter updates. Together, parameter varia-
tion direction can be effectively corrected without huge network
complexity increase.

∙ It proposes a bio-inspired Dual-layer Copy Weights with Re-
init (D-CWR) method to mitigate layer-wise imbalance. Drawing
inspiration from the human memory mechanism, D-CWR employs
memory consolidations at two layers, i.e., from sensory to short-
term and from short-term to long-term memory, which further
avoids forgetting due to rapid parameter updates in the output
classifier over existing methods.

∙ It presents a Parameter Variation Balancing Framework (PVBF) by
integrating ParamCC, E&C and D-CWR. Experiments conducted in
both short and long task sequence OCL scenarios show that PVBF
achieves an average accuracy improvement of 31%–47% over
the ER method. Especially, it reaches 97.5% of the IID method’s
accuracy using only 500 replay samples on the MiniImageNet
dataset. PVBF also exhibits general outperformance in offline CL
scenarios among classical methods.

2. Related work

In this section, we briefly review three key categories of research
relevant to the current work: traditional CL methods, ER-based meth-
ods, and output correction methods. The strengths and weaknesses of
each method are briefly discussed.

2.1. CL methods

Contemporary CL methodologies predominantly fall into three cat-
egories (Van de Ven & Tolias, 2019). Regularization-based approaches
penalize parameter updates to enforce convergence within a shared
representation space across diverse tasks (Chaudhry, Dokania, et al.,
2018; Kirkpatrick et al., 2017; Zenke, Poole, & Ganguli, 2017). These
approaches tackle the problem of catastrophic forgetting by constrain-
ing the parameter update methods. However, they faces challenges in
balancing between stability and plasticity, often resulting in subopti-
mal performance and high computational cost. Memory-based strate-
gies integrate prior task knowledge through sample or representation-
based memory adjustments during training (Bonicelli, Boschini, Por-
rello, Spampinato, & Calderara, 2022; Chaudhry, Ranzato, Rohrbach, &
Elhoseiny, 2018; Lopez-Paz & Ranzato, 2017; Riemer et al., 2018; Shin,
Lee, Kim, & Kim, 2017; Wang, Zhou, Ye, & Zhan, 2022). While these
methods effectively retain valuable knowledge across tasks, a capability
that has been validated in question generation studies (Yuan, Yin, et al.,
2022), they require storing a subset of training samples and may intro-
duce prediction bias to some extent due to issues with the training data
distribution. Dynamic structures-based approaches adapt network ar-
chitectures to ensure task-specific parameter isolation, accommodating
the integration of novel tasks (Li & Hoiem, 2017; Lomonaco et al., 2020;
Von Oswald, Henning, Grewe, & Sacramento, 2019; Yoon, Yang, Lee,
& Hwang, 2017). These approaches address the issue of interference by
isolating task-specific knowledge, but they struggle with computational
efficiency and spatial scalability as the number of tasks increases.
Recently, prompt-based methods have also been included in CL, demon-
strating promising performance in domains such as automatic program
repair (Yuan, Zhang, et al., 2022). These approaches often rely heavily
on large-scale pretrained models. Thus, methods in OCL often combine
with memory-based strategies. However, challenges remain in strik-
ing a balance between memory usage, computational efficiency, and
maintaining performance on non-stationary data streams.
3
2.2. ER-based methods

Existing effective approaches in OCL typically adopt strategies that
involve replaying samples or representations. To mitigate catastrophic
forgetting caused by task changes, ICaRL (Rebuffi et al., 2017) com-
bines distillation loss with binary cross-entropy, classifying samples
based on nearest-class prototypes computed from buffered data repre-
sentations, which is suitable for class incremental learning scenarios
where each task is sufficiently trained. However, in OCL scenarios,
iCaRL often underperforms due to insufficient training on newer tasks.
ER (Chaudhry et al., 2019) employs a fixed-size replay buffer, ran-
domly replaying a subset of samples. Despite its simplicity, ER faces
challenges in maintaining performance when learning from both re-
played samples and data stream samples simultaneously. To address
this issue, GDumb (Prabhu, Torr, & Dokania, 2020) maintains a class-
balanced memory pool and trains the model exclusively on these
samples, although the size of the memory pool often constrains its
effectiveness. MIR (Aljundi , Belilovsky, et al., 2019) introduces an
alternative improvement to ER by selecting samples that maximize the
increase in loss during replay. This method further reduces prediction
bias, albeit at the cost of increased computational burden. For loss
calculation, DER++ (Buzzega et al., 2020) employs distillation loss on
logits to enforce consistency over time, while ACE (Caccia et al., 2022)
mitigates sudden representation changes using an asymmetric update
rule. Although DER++ and ACE are promising in stabilizing learned
knowledge, they fail to resolve the issue of spatially or structurally
imbalanced parameter updates across the network, which can lead to
significant prediction bias.

2.3. Output correction methods

In OCL scenarios, prediction bias is closely related to rapid updates
of the output classifier during backpropagation (Wu et al., 2019).
OBC (Chrysakis & Moens, 2023) independently optimizes output classi-
fier to correct significant prediction bias during training. AR1*
(Lomonaco et al., 2020) combines latent replay methods with opti-
mized output classifier updates from CWR* to enhance performance.
The CWR* method aligns the parameters in the output classifier with
individual categories. It adjusts the update magnitude of these param-
eters based on the ratio of the frequency of data from a particular
class in past occurrences to its frequency in a single training iteration,
thereby correcting prediction bias. These strategies address the bias in
the output classifier but do not simultaneously correct the bias in other
parameters, leaving room for further improvement.

Although the three types of methods discussed above do not directly
address the issue of parameter variation imbalance, they provide foun-
dational ideas that have informed our approach to solving this problem.
ER effectively mitigates catastrophic forgetting caused by non-IID data
distributions in streaming tasks, while asymmetric cross entropy (ACE)
helps achieve more accurate and balanced gradient updates. These
strategies contribute to balancing parameter variations during OCL
training to some extent, and thus, we integrate these concepts into our
proposed framework. Furthermore, previous work on special handling
of the output classifier has inspired our approach to addressing the issue
of layer-wise imbalance.

3. Methodology

In this section, a detailed explanation of parameter variation im-
balance is first presented, including its two specific forms and their
manifestations in the OCL scenario. The proposed PVBF is then in-
troduced, along with its applicable learning settings. Finally, detailed
design and implementations of innovative methods incorporated into
PVBF, namely ParamCC, E&C, and D-CWR, are described, respectively.

Z. Tao et al.

Neural Networks 192 (2025) 107823
3.1. Parameter variation evaluate

In OCL, model parameters continuously evolve with the training of
various tasks, and the ultimate result of this variation determines the
model’s adaptability across the entire online data stream. Therefore, we
aim to calculate the variations of its parameters upon the completion
of training for each task in the OCL context, revealing the patterns of
parameter variation.

To record the parameters optimized through task 𝑘 (where 𝑘 ∈
{1,… , 𝐾} and 𝐾 denotes the total number of tasks), we capture the
model state at the moment of the first occurrence of (𝑘 + 1) − th
task denoted as 𝜃1.𝑘,… , 𝜃𝑀,𝑘 (where 𝑀 represents the total number
of parameters in the neural network). To model the variation of pa-
rameters, we first define the variation in parameter ranked 𝑚 (𝑚 ∈
{1,… ,𝑀}) between task 𝑘 and 𝑘 − 1 as 𝛿𝑚,𝑘, which is calculated using
the Manhattan distance as
𝛿𝑚,𝑘 = |𝜃𝑚,𝑘 − 𝜃𝑚,𝑘−1|, (1)

where | ⋅ | denotes the Manhattan distance operator.
Due to significant differences in gradient updates between differ-

ent parts of the network, 𝛿𝑚,𝑘 can vary considerably for different
𝑚. Consequently, relying solely on its numerical variation may not
accurately capture the correlation between parameters and tasks. To
address this issue, we first standardize 𝛿𝑚,𝑘 for each parameter while
preserving relative changes, thereby mitigating the impact of numerical
imbalance:
𝛿′𝑚,𝑘 = (𝛿𝑚,𝑘), (2)

where  is a customized standardization function, and 𝛿′𝑚,𝑘 is defined
as the relative change of parameter 𝑚 on task 𝑘.

Here we introduce three exemplary standardization functions uti-
lized in identifying parameter variance imbalance. The first is the
relative ratio (RR) function denoted by 𝑅𝑅(⋅), which is expressed as

𝛿𝑘 =
∑𝑀

𝑚=1 𝛿𝑚,𝑘
𝑀

, 𝑅𝑅(𝛿𝑚,𝑘) =
𝛿𝑚,𝑘
𝛿𝑘

, (3)

where 𝛿𝑘 represents the mean parameter variation for task 𝑘. This
standardization enables 𝛿′𝑚,𝑘 to capture relative parameter variation
patterns without being affected by the absolute values of gradient
updates. Additionally, by using a proportional form, this method mit-
igates the impact of different network architectures while intuitively
highlighting imbalances in parameter variations, making it easier to
identify parameters with disproportionately large or irregular updates.

As an alternative to the RR approach, Z-score (ZS) standardization
method focuses on scaling the parameter variations with respect to
their mean and standard deviation. The ZS standardization denoted by
𝑍𝑆(⋅) is defined as

𝜎𝑘 =

√

√

√

√
1
𝑀

𝑀
∑

𝑚=1
(𝛿𝑚,𝑘 − 𝛿𝑘)2, 𝑍𝑆(𝛿𝑚,𝑘) =

𝛿𝑚,𝑘 − 𝛿𝑘
𝜎𝑘

, (4)

where 𝜎𝑘 represents the standard deviation of the parameter variations
for task 𝑘. ZS method accounts for both the central tendency and the
spread of variations. Unlike the RR approach, the ZS method does not
rely on task-specific variation proportions but instead standardizes the
variations based on statistical properties, making it particularly useful
for highly heterogeneous variations or those with significant outliers.

The last standardization method is robust scaler (RS), which is also
particularly advantageous for handling significant outliers or skewed
distributions of parameter variations. The RS method standardizes the
variations based on the median and interquartile range (IQR), which is
defined as

𝑅𝑆(𝛿𝑚,𝑘) =
𝛿𝑚,𝑘 −𝑀𝑒𝑑𝑖𝑎𝑛(𝛿𝑘)

𝐼𝑄𝑅(𝛿𝑘)
, (5)

where 𝑀𝑒𝑑𝑖𝑎𝑛(𝛿𝑘) represents the median and 𝐼𝑄𝑅(𝛿𝑘) is the interquar-
tile range (the difference between the 75th and 25th percentiles) of
4
parameter variations for task 𝑘. The RS method is highly resilient to
outliers, as the median and IQR are less sensitive to extreme values than
the mean, ensuring robust parameter scaling in noisy or heavy-tailed
distributions.

Using the above standardization methods for obtaining 𝛿′𝑚,𝑘, we
recorded the relative changes at the end of 1 ∼ 4 task in a sequence
of short tasks (a total of 5 tasks) during continual training on Ci-
far10 (Krizhevsky, Hinton, et al., 2009) with ER method (Chaudhry
et al., 2019) using a backbone of reduced-Resnet18 (Aljundi, Belilovsky,
et al., 2019). Through numerical analysis, RR intuitively demonstrates
the relative differences in parameter updates, highlighting potential
imbalances in both the overall and hierarchical patterns of parame-
ter variations, while maintaining minimal computational complexity.
Therefore, for all the analysis and experiments presented below, we
specifically used the RR standardization method. The results obtained
using the other two standardization methods are provided in Appendix
A. More importantly, our observations reveal two distinct imbalances
within the OCL scenario, as shown in Figs. 2 and 3.

Correlation-induced Imbalance. Fig. 2 illustrates the uneven dis-
tribution of parameter updates during OCL training, where a small
fraction of parameters undergo significant changes, with some updates
exceeding 64 times the mean, while over 65% of parameters exhibit
updates smaller than the mean (𝛿′𝑚,𝑘 < 1). This indicates that most
parameters remain inactive, contributing minimally to task learning. In
contrast, a smaller subset of parameters which experience substantial
updates correlates closely with task memory. Such imbalances sug-
gest inefficient parameter utilization, where inactive parameters are
underutilized, and heavily updated parameters are at risk of causing
catastrophic forgetting. Therefore, subsequent training should focus on
better engaging inactive parameters while safeguarding those critical
for task retention.

Layer-wise Imbalance. Fig. 3 demonstrates that in CL, the out-
put classifier, i.e. the last linear layer, exhibits consistently higher
parameter update rates compared to earlier feature extraction layers.
This occurs because backpropagation begins at the classifier, which
directly addresses prediction bias, particularly when input samples
are imbalanced. Consequently, the classifier undergoes more frequent
and larger updates, amplifying prediction biases and potentially desta-
bilizing learning. To mitigate this, balancing updates across layers
or restricting output classifier updates can reduce this disparity and
improve the overall stability of the model.

3.2. Overview of parameter variation balancing framework

To address the two parameter variation imbalance issues outlined
above, we propose PVBF designed for OCL scenarios. As in Fig. 4,
PVBF primarily consists of two balancing strategies, E&C and D-CWR
to mitigate imbalanced parameter variations in both the overall and
the output layer level during training, thereby enhancing the net-
work’s adaptability to non-stationary data streams. PVBF builds upon
an ER framework, which retains a memory buffer storing part samples
from previous tasks to aid in knowledge retention. For each neuron
in each task, ParamCC is proposed to calculate correlation between
parameter and previous tasks by capturing the variations in parameter
weights during the training process. First, it employs a Manhattan
distance-based metric to monitor relative parameter changes after each
OCL task. Then, these changes are normalized using Min-Max nor-
malization before and after task transitions to ensure a consistent
correlation measurement (Jiawei & Micheline, 2006). To reduce time
and space overhead, only the maximum correlation value of each
parameter is retained throughout training. Based on these correlation
values, E&C is then applied to update the gradients, encouraging low-
correlation parameters to acquire new knowledge while consolidating
high-correlation parameters to preserve previously learned knowledge.
At the end of each task’s training, the D-CWR strategy is applied to
the output classifier. Parameters obtained through gradient descent are

Z. Tao et al. Neural Networks 192 (2025) 107823
Fig. 2. Neuron counts for different relative changes 𝛿′𝑚,𝑘.
Fig. 3. Average relative changes in parameters across different layers.
treated as sensory memory. Class-specific knowledge is then selectively
transferred to a short-term memory pool through the first consolidation,
followed by further consolidation into a long-term memory pool with a
defined probability. Finally, the knowledge stored in long-term memory
is used for prediction. This strategy slows the update rate of output
layer parameters to reduce the prediction bias caused by rapid updates
in this layer.

Besides, our study focuses on CL in dynamic and non-stationary
sequential tasks. Firstly, we adopt the CL setting, where a model with
parameters 𝜣 must generalize well to test data without full access to
previous training samples (Caccia et al., 2022). Each task 𝑘 consists
of training data 𝐃𝑘 = {𝐗𝑘,𝐘𝑘}, where 𝐗𝑘 presents the input data and
𝐘𝑘 the corresponding labels. To ensure task diversity, we follow the
classic disjoint label setting, where label sets of different tasks do not
overlap (𝐘𝑖 ∩ 𝐘𝑗 = ∅ for 𝑖 ≠ 𝑗). Building upon this, we further explore
OCL setting, where training process is divided into several time steps,
with each time step corresponding to a single batch of training data.
At each time step 𝑡, the model receives a new batch of training data
(𝐗𝑖𝑛

𝑡 ,𝐘
𝑖𝑛
𝑡). Over time, the data distribution shifts as new tasks emerge.

Specifically, at certain time steps {𝑡𝛼 , 𝑡𝛽 ,…} ∈ 𝑇 , the data transition
from one task to another, which means that the continuous two sets of
samples that the learner receives may belong to different tasks, namely
{𝐗𝑖𝑛

𝑡𝛼−1
,𝐘𝑖𝑛

𝑡𝛼−1
} ∈ 𝐷𝑘 and {𝐗𝑖𝑛

𝑡𝛼
,𝐘𝑖𝑛

𝑡𝛼
} ∈ 𝐷𝑘+1. The training tasks occur

sequentially, and task identifiers are not provided during evaluation.
In this non-stationary setting, maintaining the neural network’s classi-
fication performance across tasks is particularly challenging. We posit
that preserving more task-specific network parameters’ memory dur-
ing learning while mitigating prediction bias from parameter updates
during new task learning is critical to overcoming this challenge.

We adopt ACE to compute the loss, which separately handles data
from the data stream and the memory buffer (Caccia et al., 2022). The
total loss is given by

(𝐗𝑏𝑓 ∪ 𝐗𝑖𝑛) = 𝑟𝑒(𝐗𝑏𝑓 ,𝐘𝑜𝑙𝑑 ∪ 𝐘𝑐𝑢𝑟𝑟) + 𝑖𝑛(𝐗𝑖𝑛,𝐘𝑐𝑢𝑟𝑟), (6)
𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

5
Algorithm 1 Parameter Variation Balancing Framework (PVBF)
Input the hyperparameter 𝛼, 𝛽, Learning rate 𝑙.
Initialize network parameters 𝜣 ,gradients 𝒈, and memory buffer
size M
Initialize 𝑪, 𝑴𝒔, 𝑴𝒄 , 𝑴 𝒍 and 𝑷 to zeroes
for each task 𝑘 ∈ {1, ..., 𝐾} do
 store network parameters 𝜣 in 𝜽𝑘−1
 for each training batch at timestep 𝑡 (𝐁𝑡) do
 receive 𝐗𝑖𝑛

𝑡 ∼ 𝐁𝑡 from input stream, 𝐗𝑟𝑒
𝑡 ∼ 𝐌 from memory

buffer
 Calculate (𝐗𝑏𝑓

𝑡 ∪ 𝐗𝑖𝑛
𝑡)

 𝒈 ← 𝑆𝐺𝐷(∇,𝜣) //calculate gradients
 if 𝑘 > 1 𝒈′ ← 𝒈,𝑪 ⊳ section 3.4
 𝜣 ← 𝒈′, 𝑙
 end for
 𝜹′ ← 𝜣,𝜽𝑘−1 ⊳ section 3.2
 𝑪 ← 𝜹′, 𝛼, 𝛽 ⊳ section 3.3
 update 𝑴𝒔, 𝑴𝒄 , 𝑴 𝒍 and 𝑷 using D-CWR ⊳ section 3.5
end for

where  denotes the total loss function, 𝑖𝑛 and 𝑟𝑒 represent the cross-
entropy loss of the data stream and data obtained from the memory
buffer, 𝐗𝑏𝑓

𝑡 and 𝐗𝑖𝑛
𝑡 represent the subsets of training samples at time

step 𝑡, 𝐘𝑜𝑙𝑑
𝑡 denotes the classes encountered up to that point, and 𝐘𝑐𝑢𝑟𝑟

𝑡
refers to the current training classes. Finally, a complete workflow of
PVBF is provided in Algorithm 1. In the following, we will detail key
designs of ParamCC, E&C strategy, and D-CWR strategy, respectively.

3.3. Parameter correlation calculate

To reduce the impact of gradient updates on absolute parameter
variations and clarify the relationship between parameter variations
and their correlation with previous tasks, Min-Max normalization can

Z. Tao et al. Neural Networks 192 (2025) 107823
Fig. 4. Overall illustration of PVBF. PVBF is built upon a conventional experience replay framework and incorporates two main strategies for balancing parameter variations. First,
the Encourage and Consolidate (E&C) strategy dynamically adjusts all neurons in the network during training. This strategy leverages the parameter correlations obtained through
the Parameter Correlation Calculate (ParamCC) method during training to adjust the gradients computed by the Stochastic Gradient Decent (SGD) process. Second, the Dual-layer
Copy Weights with Re-init (D-CWR) strategy is specifically applied to the output classifier, which progressively reinforces knowledge of individual class categories.
be used to standardize parameter correlations within a fixed range.
Based on this idea, we introduce ParamCC, a method for evaluating the
association between specific neural network parameters and previously
learned tasks. The correlation of each parameter 𝜃𝑚 to the memory of
task 𝑘 can be expressed as follows:

𝐶𝑚,𝑘 =
𝛿′𝑚,𝑘 − min(𝑽 𝑘)

max(𝑽 𝑘) − min(𝑽 𝑘)
⋅ (𝛽 − 𝛼) + 𝛼, (7)

where 𝐶𝑚,𝑘 denotes the correlation of parameter 𝑚 with the memory of
task 𝑘, and 𝑽 𝑘 = {𝛿′1,𝑘,… , 𝛿′𝑀,𝑘} represents the set of relative changes.
The hyperparameters 𝛼 and 𝛽 define the range of correlation for the
parameters with the tasks, with 𝐶𝑚,𝑘 being normalized to the interval
[𝛼, 𝛽].

By applying the aforementioned methods, we can derive a cor-
relation measure 𝐶𝑚,𝑘 for each parameter in the network with each
previously trained task. To efficiently utilize this correlation measure
and reduce computational and spatial overhead, we maintain only
the maximum correlation of each parameter with the previous tasks
throughout the training process as
𝐶𝑚 = max

𝑟∈{1,…,𝑘−1}
𝐶𝑚,𝑟, (8)

where 𝐶𝑚 represents the correlation of parameter 𝑚 with all previously
experienced tasks, and its value can be computed in real time during
the training process. The variable 𝑘 denotes the task currently being
trained.

3.4. Encourage and consolidate

To mitigate catastrophic forgetting, we further integrate parameter
correlation into the training process and propose a gradient correction
method called E&C. The core idea is to encourage rapid updates for
parameters with low correlation to previous tasks while consolidating
those with high correlation by decelerating their update rates. For time
step 𝑡, the gradient 𝑔𝑚,𝑡 obtained by neuron 𝑚 through gradient descent
undergoes the following correction process:

𝑔′ =
𝑔𝑚,𝑡 , (9)
𝑚,𝑡 𝐶𝑚

6
where 𝑔′𝑚,𝑡 represents the adjusted gradient for neuron 𝑚 at time step
𝑡, taking into account the correlation of the parameters to previously
learned tasks. This correction enables rapid updates for parameters
with low correlation to previous tasks, thereby encouraging them to
acquire new knowledge. Conversely, it ensures that parameters with
high correlation to previous tasks are updated more cautiously, thereby
consolidating their memory of those tasks. During the training pro-
cess of online continual learning, we utilize the corrected parameters
{𝑔′1,𝑡,… , 𝑔′𝑀,𝑡} for parameter updates. This E&C approach facilitates a
balance between learning new tasks and retaining knowledge of old
tasks, ultimately enhancing the model’s adaptability and mitigating
catastrophic forgetting.

3.5. Dual-layer copy weights with Re-init

To minimize the phenomenon of parameter variation imbalance, in
addition to the E&C method designed for overall model-level correc-
tions, PVBF incorporates a specialized correction method specifically
targeting the output classifier. Inspired by the interactions among
sensory memory, short-term memory, and long-term memory (denoted
as 𝑠, 𝑐, 𝑙) in the complementary learning systems (CLS) framework (Mc-
Clelland, McNaughton, & O’Reilly, 1995), we propose an improved
approach that enhances memory consolidation and reduces forgetting.
Specifically, we introduce a D-CWR method that simulates the memory
process after copying weights, which involves two consolidation layers:
the first layer simulates the hippocampal process of converting sensory
memory into short-term memory, while the second layer models the
neocortical process of transferring short-term memory into long-term
memory. In the following, we first define the concept of sensory mem-
ory in the context of the output classifier, followed by an explanation
of the short-term and long-term consolidation processes.

We consider that the sensory memory of the output classifier origi-
nates from the knowledge acquired during the training process, partic-
ularly the model parameter weights obtained through gradient descent.
In experiments conducted in Maltoni and Lomonaco (2019), a tech-
nique called mean-shift effectively normalizes the output classification
layer model parameters, maintaining them within a certain range while

Z. Tao et al. Neural Networks 192 (2025) 107823
emphasizing the features of individual classes, which inspires our de-
sign of sensory memory. We define the sensory memory of the output
classifier as the parameter weights assigned to each class after each
training iteration, subtracted by the mean of the weights across all
classes that appear in that iteration, specifically as follows:

𝑀𝑠
𝑗,𝑡 = 𝜔𝑗,𝑡 −

∑

𝑘∈𝑆𝑡
𝜔𝑘,𝑡

|𝑆𝑡|
, (10)

where 𝑀𝑠
𝑗,𝑡 represents the sensory memory of the model for class 𝑗, 𝜔𝑗,𝑡

denotes the 𝑗th parameter of the output classifier, and 𝑆𝑡 represents
the set of sample labels input to the model, at time step 𝑡, operator | ⋅ |
indicates calculating the cardinality of the set. Note that the mapping
of the output classifier parameters to each class is determined by the
properties of the softmax activation function. The softmax function
connecting the final linear layer transforms the output layer parameters
into classification probabilities for each class.

In CLS, the hippocampus is responsible for converting sensory mem-
ory into short-term memory by selectively processing certain informa-
tion. The first layer of the D-CWR consolidation strategy simulates this
process of the hippocampus. When sensory memory is received, D-
CWR randomly selects one of the following two actions to execute: (i)
Integrating the current sensory memory with the existing short-term
memory; (ii) Retaining the previous short-term memory while with-
holding processing the current sensory memory. The model handles
the short-term memory 𝑀𝑐

𝑗,𝑡 for class 𝑗 at time step 𝑡, which can be
calculated as

𝑀𝑐
𝑗,𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑀𝑐
𝑗,𝑡−1, if 𝜖 ≥ 𝑝

𝑀𝑐
𝑗,𝑡−1⋅𝜂

𝑐
𝑗,𝑡+𝑀

𝑠
𝑗,𝑡

𝜂𝑐𝑗,𝑡+1
, if 𝜖 < 𝑝,

(11)

where 𝜖 is a random variable uniformly distributed in the interval
[0, 1], 𝑝 is a hyperparameter representing the probability that the model
converts sensory memory into short-term memory, and 𝜂𝑐𝑗,𝑡 denotes the
short-term memory retention coefficient for class 𝑗 at time step 𝑡.

The neocortex plays a key role in converting short-term memory
into long-term memory, with more frequent review of a particular class
leading to stronger memory consolidation. The second layer of the
D-CWR consolidation strategy simulates this process of the neocortex
by integrating short-term memory with existing long-term memory
according to a specified retention ratio. The long-term memory 𝑀 𝑙

𝑗,𝑡
for class 𝑗 at time step 𝑡 is expressed as

𝑀 𝑙
𝑗,𝑡 =

𝑀 𝑙
𝑗,𝑡−1 ⋅ 𝜂

𝑙
𝑗,𝑡 +𝑀𝑐

𝑗,𝑡

𝜂𝑙𝑗,𝑡 + 1
, (12)

where 𝜂𝑙𝑗,𝑡 denotes the long-term memory retention coefficient for class
𝑗 at time step 𝑡, 𝜂𝑙𝑗,𝑡 can be calculated alongside the short-term memory
retention coefficient 𝜂𝑐𝑗 for class 𝑗 at time step 𝑡 as

𝜂𝑐𝑗,𝑡 =
𝑃𝑗,𝑡

𝑈𝑗,𝑡
; 𝜂𝑙𝑗,𝑡 =

√

𝑃𝑗,𝑡

𝑈𝑗,𝑡
, (13)

with 𝑃𝑗,𝑡 denotes the number of times class 𝑗 has appeared during the
model training process at time step 𝑡, and 𝑈𝑗,𝑡 represents the number
of occurrences of class 𝑗 in the label set 𝑆𝑡. Notably, the retention
coefficients 𝜂𝑐𝑗,𝑡 and 𝜂𝑙𝑗,𝑡 are designed to naturally adapt to the continual
growth of the datestream. Since 𝑃𝑗,𝑡 and 𝑈𝑗,𝑡 are incrementally updated
during training, the memory consolidation process automatically re-
flects the relative importance and frequency of each class over time.
This mechanism allows D-CWR to effectively manage the evolving
distribution of sensory, short-term, and long-term memory without
requiring large storage or revisiting of past data.

To implement the D-CWR strategy, we present the algorithm that
integrates the two consolidation stages, which begins by initializing
memory vectors for sensory, short-term, and long-term memory. For
each training step, it computes the sensory memory of the output
classifier and updates short-term memory based on a probabilistic
7
decision determined by a random variable 𝜖 and a hyperparameter
𝑝. The short-term memory is subsequently consolidated into long-
term memory using class-specific retention coefficients. This process
ensures that the classifier’s memory is continuously updated, preserving
important knowledge while mitigating forgetting. The detailed steps of
this memory consolidation procedure are summarized in Algorithm 2.

Algorithm 2 Dual-Layer Copy Weights with Re-init (D-CWR)
Initialize Initialize vector 𝑴𝒔, 𝑴𝒄 , 𝑴 𝒍 and 𝑷 to zeroes
for each training time step 𝑡 batch samples 𝑺 𝑡(𝑿𝑖𝑛

𝑡 ∪𝑿𝑟𝑒
𝑡) do

 Denote 𝜔𝑗 as the 𝑗-th parameter of the output classifier
 𝜔 ←

∑

𝑘∈𝑆𝑡
𝜔𝑘∕|𝑆𝑡|

 for each category 𝑗 appearing in the batch 𝑺 𝑖 do
 𝑀𝑠

𝑗 ← 𝜔𝑗 − 𝜔
 Obtain the occurrences of class 𝑗 in 𝑺 𝑡 as 𝑈𝑗 .
 𝜂𝑐𝑗 ←

𝑃𝑗
𝑈𝑗

 𝜂𝑙𝑗 ←
√

𝑃𝑗
𝑈𝑗

 Perform one of the following operations based on a random
variable 𝜖 and hyperparameter 𝑝:
 𝜖 ≥ 𝑝: Retain 𝑀𝑐

𝑗

 𝜖 < 𝑝: 𝑀𝑐
𝑗 ←

𝑀𝑐
𝑗 ⋅𝜂

𝑐
𝑗+𝑀

𝑠
𝑗

𝜂𝑐𝑗+1

 𝑀 𝑙
𝑗 ←

𝑀 𝑙
𝑗 ⋅𝜂

𝑙
𝑗+𝑀

𝑐
𝑗

𝜂𝑙𝑗+1
.

 𝑃𝑗 ← 𝑃𝑗 + 𝑈𝑗 .
 end for
 𝝎 ← 𝑴 𝒍

end for

With the above methods, we address the issue of correlation-
induced imbalance and layer-wise imbalance in OCL from two perspec-
tives: the overall model parameters and the output classifier param-
eters. This results in a parameter variation balancing framework that
enables network models to better adapt to non-stationary data streams.
Theoretically, the ParamCC and E&C strategies effectively capture
the correlations between parameter variations and the knowledge of
each task. By utilizing these correlations, they dynamically adjust the
magnitude of parameter variations during subsequent training, thereby
balancing the retention of new and old knowledge. These two strategies
further enhance the performance of ER-based methods in continual
learning. Not only are they highly effective in online scenarios, but
they also show some benefits in offline settings. On the other hand,
the D-CWR method primarily mitigates the layer-wise imbalance, prov-
ing effective in counteracting forgetting when the output classifier
undergoes rapid updates.

4. Experiments

In this section, we first compare PVBF with competitive methods
based on ER in two OCL scenarios: short task sequences and long
task sequences. Next, we compare PVBF with other canonical ER-based
methods in an offline CL scenario. The design of these experiments aims
to validate the following performance metrics: (i) PVBF performs well
across various OCL scenarios; (ii) PVBF components effectively mitigate
the imbalance in parameter changes, thereby alleviating forgetting
in OCL scenarios; (iii) Despite being specifically designed for OCL
scenarios, PVBF still demonstrates strong performance when applied to
offline CL settings.

4.1. OCL experiments

We first evaluate the performance of PVBF in the OCL setting,
where samples from each task are sequentially presented to the model
in a one-shot manner. As such, this setup places a high demand on

Z. Tao et al. Neural Networks 192 (2025) 107823
Fig. 5. ACC results for short task sequence OCL experiments (PVBF-D: PVBF without D-CWR).
the model’s ability to adapt to non-stationary data streams. Only CL
algorithms specifically designed for such challenges can effectively mit-
igate catastrophic forgetting in this setting. An effective OCL algorithm
should efficiently learn the essential knowledge required to complete
tasks with high accuracy while minimizing computational overhead.

4.1.1. Datasets and setup
We conducted experiments to evaluate OCL for image classification

tasks. As with other OCL experiments (Caccia et al., 2022; Chrysakis
& Moens, 2023), all benchmarks were evaluated in a single-head set-
ting. In each of the datasets mentioned below, the model performs a
classification task across 𝑁 classes, where 𝑁 depends on the specific
dataset.

We selected three representative image datasets to conduct these
OCL experiments: Split Cifar10, Split Cifar100 (Krizhevsky et al., 2009),
and Split MiniImagenet (Vinyals, Blundell, Lillicrap, Wierstra, et al.,
2016). These datasets are commonly used for evaluating OCL, with a
focus on image classification tasks. The details on task division of the
three adopted datasets are illustrated below:

Split Cifar10: This dataset consists of 60,000 images across 10
classes. It is one of the most widely adopted datasets in OCL research,
often used as the standard benchmark for tasks with short task se-
quences. For our experiments, we partitioned the dataset into 5 tasks,
each containing 2 classes.

Split Cifar100: The Cifar100 dataset includes 60,000 images spread
across 100 classes. In our experiments, it was partitioned into 20
tasks, with each task containing 5 classes. This dataset presents a more
complex and diverse challenge, making it suitable for evaluating OCL
with longer task sequences.

Split MiniImagenet: This dataset consists of 100 classes, with each
class containing 600 images. We partitioned it into 20 tasks, each with
5 classes. Like Cifar100, MiniImagenet is highly challenging for OCL
due to its more diverse categories and longer task sequences.

4.1.2. Baselines
In our evaluation, we focus on replay-based methods due to their

demonstrated effectiveness in the OCL setting, evidenced by previous
studies (Aljundi, Belilovsky, et al., 2019; Caccia et al., 2022; Chaudhry
et al., 2019; Ji, Henriques, Tuytelaars, & Vedaldi, 2020). Within this
context, high-efficiency learning is necessary for all methods under
consideration. To ensure a fair comparison, we have implemented
uniform buffer management across all methods, employing Reservoir
Sampling (Vitter, 1985) to retain or discard samples. We have se-
lected several classic and state-of-the-art OCL baselines for our analysis,
including ER (Chaudhry et al., 2019), Incremental Classifier and Repre-
sentation Learning (iCaRL) (Rebuffi et al., 2017), Maximally Interfered
Retrieval (MIR) (Aljundi, Belilovsky, et al., 2019), Dark Experience
Replay (DER++) (Buzzega et al., 2020), Experience Replay with Asym-
metric Cross-Entropy (ER-ACE) (Caccia et al., 2022), and Architect-and-
Replay (AR1*) (Lomonaco et al., 2020). Additionally, we include an
8
independent and IID scenario (Caccia et al., 2022) as a benchmark,
where the learner is trained on the dataset with a single pass, treating
all classes as if they were part of a single task. This baseline variant is
designed to have a similar computational budget to that of the replay
methods.

4.1.3. Architectures and hyperparameters
Like previous researches (Buzzega et al., 2020; Caccia et al., 2022;

Chrysakis & Moens, 2023), we use a reduced ResNet-18 network for all
the datasets above, and all methods are applied to the same backbone.
This choice enables us to fairly compare various methods, as these
parameters directly affect the model’s parameter size and the ability
to classification tasks. Hyperparameters used in the experiments are
presented in the following.

Learning Rate. The distance parameter shifts in the training process
is directly affected by the learning rate. So in our experiments, for each
dataset we set a fixed learning rate. Specifically, for Cifar10, we set the
learning rate fixed at 0.1, for Cifar100 and MiniImagenet, we set the
learning rate fixed at 0.01.

Memory Buffer Size. In the context of OCL scenarios, the perfor-
mance of ER-based methods is closely tied to the hyperparameter of
memory buffer size (MS). To ensure a fair comparison among various
methods, it is necessary to evaluate their performance across different
memory buffer sizes. Therefore, on the Cifar10 dataset, we varied
this hyperparameter across three values: 20, 100, and 500. We con-
ducted comparisons of selected methods under these three different
settings. Conversely, on the Cifar100/MiniImageNet datasets, we fixed
this hyperparameter at 500 to emphasize fairness in comparison.

Other Hyperparameters. Following previous studies (Aljundi,
Belilovsky, et al., 2019; Caccia et al., 2022; Chaudhry, Ranzato, et al.,
2018), for DER++, we set the hyperparameter 𝛼 = 0.1 and 𝛽 = 0.5. The
way to realizing masking loss for ER-ACE is the same as the author
proposed in Buzzega et al. (2020). For our PVBF, we set normalization
hyperparameter 𝛼 = 0.5, 𝛽 = 2.0, and the probability for D-CWR 𝑝 fixed
at 0.9. A detailed analysis of the sensitivity of the hyperparameter 𝑝 is
provided in Appendix D.

4.1.4. Metrics
We utilized average per-task accuracy (ACC↑, higher is better)

alongside the forgetting ratio (FR↓, lower is better) metric (Chaudhry,
Dokania, et al., 2018), to assess the continual learning capabilities of
various algorithm models in OCL scenarios. The ACC metric compre-
hensively assesses the learning capability of algorithmic models in OCL
scenarios, while the FR metric evaluates their ability to consolidate
memory during the training process. Let 𝑎𝑖,𝑗 be the model’s accuracy
on task 𝑖 on the test dataset after being trained on task 𝑗, ACC and FR
are defined as

𝐴𝐶𝐶 = 1
𝐾
∑

𝑎𝑖,𝑘 (14)

𝐾 𝑖=1

Z. Tao et al. Neural Networks 192 (2025) 107823
Fig. 6. ACC results for long task sequence OCL experiments (PVBF-D: PVBF without D-CWR).
Table 1
Short task sequence experiment results on split Cifar10. We conducted experiments in three scenarios: 𝑀𝑆 = 20, 𝑀𝑆 = 100,
𝑀𝑆 = 500. All entries are 95%-confidence intervals over 15 runs.
 Method MS=20 MS=100 MS=500

 ACC FR ACC FR ACC FR
 IID 68.0 ± 1.1 – 68.0 ± 1.1 – 68.0 ± 1.1 –
 ER 26.5 ± 1.3 50.4 ± 4.2 37.9 ± 1.5 28.1 ± 1.8 46.2 ± 1.7 18.9 ± 3.6
 iCaRL 40.0 ± 1.1 38.5 ± 1.6 42.4 ± 1.1 32.3 ± 1.5 44.1 ± 1.0 30.6 ± 1.4
 MIR 28.8 ± 1.4 46.7 ± 2.5 46.7 ± 0.9 18.8 ± 2.5 47.0 ± 2.0 𝟗.𝟏 ± 2.8
 DER++ 30.8 ± 1.8 33.7 ± 4.3 39.8 ± 1.3 23.3 ± 2.1 47.8 ± 1.6 13.9 ± 2.8
 ER-ACE 37.7 ± 0.8 28.8 ± 2.7 47.4 ± 1.2 20.0 ± 2.6 53.3 ± 1.4 15.1 ± 1.7
 AR1* 24.5 ± 1.4 75.9 ± 1.8 38.9 ± 1.8 53.0 ± 2.5 51.6 ± 2.5 36.4 ± 3.7
 (ours) PVBF w/o D-CWR 37.9 ± 1.0 26.6 ± 2.0 47.1 ± 1.3 19.0 ± 1.7 54.8 ± 1.7 12.7 ± 2.0
 (ours) PBVF 𝟒𝟏.𝟐 ± 0.8 𝟐𝟒.𝟎 ± 2.0 𝟓𝟎.𝟖 ± 1.4 𝟏𝟖.𝟏 ± 1.8 𝟓𝟗.𝟐 ± 1.8 10.6 ± 1.0
𝐹𝑅 = 1
𝐾 − 1

𝐾−1
∑

𝑖=1
max

𝑘∈{1...𝐾}
𝑎𝑖,𝑘 − 𝑎𝑖,𝐾 (15)

4.1.5. Short task sequence OCL experiments
First as a standard short task sequence setting (Caccia et al., 2022),

we apply our methods on Cifar10 datasets, along with the baselines.
The results are shown in Table 1 and Fig. 5.

In experiments on Cifar10 under standard OCL scenarios, varying
memory buffer sizes reveal distinct impacts on performance metrics.
The IID method reveals the upper bound of learning accuracy for
network models on this dataset (where no forgetting issue exists). As in
Table 1, In scenarios with 𝑀𝑆=20, 𝑀𝑆=100, and 𝑀𝑆=500, our PBVF
demonstrates a significant accuracy advantage over other baselines,
achieving an average 39.2% improvement in ACC compared to the ER
method. Furthermore, our approach is able to further reduce the FR
metric based on ER-ACE and AR1*, and has the lowest FR metrics
in 𝑀𝑆 = 20 and 𝑀𝑆 = 100 settings, demonstrating more effective
consolidating memory of past knowledge.

The results of the short task sequence experiments not only demon-
strate that our PVBF exhibits strong adaptability in this setting, but also
validate our hypothesis regarding the parameter variation imbalance.
By comparing the PVBF without D-CWR to the ER-ACE method, we
observe that the PVBF without D-CWR consistently achieves better
performance across 𝑀𝑆 = 20, and 𝑀𝑆 = 500 settings, and lower FR in
all settings, indicating that the E&C strategy alleviates the correlation-
induced imbalance. Furthermore, when the D-CWR strategy is applied,
the PVBF framework shows significantly lower FR and higher ACC,
which can be attributed to the severe layer-wise imbalance in the
short-task sequence OCL setting, and our D-CWR strategy effectively
mitigates this imbalance.

4.1.6. Long task sequence OCL experiments
Similar experiments are conducted with the split Cifar100 and split

MiniImagenet dataset with 20 tasks. The results are shown in Table 2
and Fig. 6.
9
Table 2
Long task sequence experiment results on split Cifar100 and split MiniImagenet. All
entries are 95%-confidence intervals over 15 runs.
 Method Cifar100 MiniImagenet

 ACC FR ACC FR
 IID 28.3 ± 0.9 – 24.3 ± 1.6 –
 ER 17.5 ± 0.5 50.4 ± 0.7 18.1 ± 0.6 40.8 ± 1.1
 iCaRL 17.1 ± 0.3 22.1 ± 0.3 16.8 ± 0.3 15.8 ± 0.6
 MIR 18.1 ± 0.5 47.9 ± 0.7 18.9 ± 0.6 38.3 ± 0.9
 DER++ 10.9 ± 0.6 61.7 ± 0.7 10.3 ± 0.7 51.6 ± 1.0
 ER-ACE 24.0 ± 0.7 𝟏𝟎.𝟏 ± 0.7 23.2 ± 0.7 𝟖.𝟗 ± 0.8
 AR1* 14.6 ± 0.4 58.1 ± 0.7 15.7 ± 0.5 47.9 ± 0.6
 (ours) PVBF w/o D-CWR 𝟐𝟓.𝟖 ± 0.7 10.3 ± 0.8 𝟐𝟑.𝟕 ± 0.8 9.2 ± 0.9
 (ours) PVBF 21.7 ± 0.7 11.4 ± 0.6 20.9 ± 0.4 9.3 ± 0.5

The experimental results demonstrate that our PVBF without D-
CWR outperforms all baseline methods on both the Cifar100 and Mini-
imagenet datasets. As in Table 2, particularly on the split Cifar100
dataset, the PVBF without D-CWR shows a 47% improvement in ACC
over the ER method, approaching the model accuracy upper bound
indicated by the IID method. On the split Miniimagenet dataset, the
PVBF without D-CWR also performs well, showing improvements over
the previously best-performing ER-ACE method. Additionally, the FR
metric for the PVBF without D-CWR is relatively low in both datasets,
very close to the best ER-ACE results, but for the ACC metric, PVBF
without D-CWR has a clear advantage. This confirms that the evalu-
ation of parameter importance and overall gradient correction in the
PVBF without D-CWR are effective for long task sequences in the OCL
scenario.

The OCL settings with long task sequences reveal significant dif-
ferences in parameter variation imbalance compared to those with
short task sequences. D-CWR may reduce the performance of PVBF,
and the AR1* method, which only uses output classifier optimiza-
tion, also performs poorly. We hypothesize that this is due to the

Z. Tao et al. Neural Networks 192 (2025) 107823
Fig. 7. Average relative changes in parameters across different layers in a long task sequence OCL experiment on MiniImagenet applying PVBF.
Table 3
Ablation experiment results on split Cifar10. All entries are 95%-confidence intervals
over 15 runs.
 PVBF w/o E&C D-CWR ACE –
 ACC 55.9 ± 1.1 54.8 ± 1.7 51.3 ± 2.7 59.2 ± 1.8
 FR 13.3 ± 1.6 12.7 ± 2.0 41.8 ± 3.1 10.6 ± 1.0

increased complexity and more frequent changes in tasks within the
long task sequence scenario, which requires the output classifier to
update more rapidly. In this scenario, as illustrated in Fig. 7, the
relative changes in the parameters of the output classifier (linear layer)
gradually decrease as the number of tasks increases, ultimately leading
to a diminished effect of layer-wise imbalance. In other words, in these
settings, correlation-induced imbalance is the primary contributor to
parameter variation imbalance. Our PVBF without D-CWR primarily
focuses on optimizing parameter dependency imbalance, which allows
it to achieve performance close to that of the IID method.

4.1.7. Ablation study
Based on the results of the ablation study presented in Table 3, sev-

eral key observations can be made regarding the performance of PVBF
on the split Cifar10 dataset. The results of the ablation experiments
demonstrate significant impacts of removing different modules on the
PVBF. Removing the E&C and D-CWR modules decreased the ACC from
59.2% to 55.9% and 54.8%, indicating their substantial contributions
to accuracy. Simultaneously, the FR values for these modules increased
from 10.6% to 13.3% and 12.7%, illustrating their effectiveness in
reducing forgetting. This implies that it is essential to correct prediction
bias both holistically and specifically in the output classifier. Removing
the ACE module caused the ACC to drop from 59.2% to 51.3%, and FR
to increase from 10.6 to 41.8, highlighting the importance of combining
ACE into PVBF to mitigate catastrophic forgetting.

4.1.8. Random task order experiments
In dynamic learning scenario, task execution orders may be adjusted

in real-time due to external environmental factors, introducing uncer-
tainty into the OCL process. Thus, we further conducted experiments to
evaluate the stability and effectiveness of the PVBF framework under
conditions of randomized task order.

To simulate this scenario, we performed experiments on the split Ci-
far10 dataset by varying MS and randomly shuffling the task sequence
at each run. We evaluated the model using ACC and FR as performance
metrics. Each configuration was executed 15 times to ensure statistical
robustness.

Table 4 and Fig. 8 report the results under three settings: 𝑀𝑆 = 20,
𝑀𝑆 = 100, and 𝑀𝑆 = 500. The results indicate that the proposed
PVBF method consistently achieves the highest average accuracy across
all memory settings and maintains a lower forgetting rate compared
to other strong baselines, including ER, iCaRL, DER++, and ER-ACE.
10
Furthermore, even without the D-CWR module, the ablated version
(PVBF w/o D-CWR) remains competitive, indicating that our parameter
variation balancing strategy is inherently robust to varying task orders.

Furthermore, as shown in Tables 1 and 4, one of the key challenges
posed by random task orders in OCL lies in their significant impact
under low replay buffer settings (e.g., 𝑀𝑆 = 20). In such cases, the
uncertainty in task sequence tends to result in a higher FR, indicating
that the model forgets a larger portion of previously learned knowl-
edge, which in turn leads to a notable drop in classification accuracy.
Under this challenging condition, our PVBF framework consistently
achieves the lowest FR and the highest ACC among all compared
methods, demonstrating strong stability and adaptability in learning
from uncertain task sequences.

4.2. Offline CL experiments

To compare with more ER-based CL methods designed for offline
scenarios and to further validate the stable performance of PVBF in
more CL settings, we applied PVBF and other baselines to the same
offline CL setting. The offline setting typically includes two specific
learning modes: class-incremental (class-IL) and task-incremental (task-
IL). The primary difference between these two learning modes lies in
the evaluation process. In the class-IL learning mode, task identifiers are
not provided to the model, and the classifier must accurately predict the
class of validation samples among all seen classes. In contrast, for the
task-IL learning mode, task identifiers are provided to the model, and
the classifier only needs to classify samples within the corresponding
task. In the offline CL setting, we use the same evaluation metrics as in
the OCL scenario.

4.2.1. Datasets and setup
In reference to the standard research on offline continual learning

(CL) in Buzzega et al. (2020), we conduct experiments on the widely
used Split-Cifar10 dataset, addressing both class-IL and task-iL sce-
narios. These two scenarios respectively assess the model’s memory
capabilities for the entire dataset and for individual tasks, making them
highly representative in the context of offline CL. Similar to the OCL
scenario, we divide the Split-Cifar10 dataset into five tasks, with each
task requiring the model to classify samples from two distinct classes.

4.2.2. Baselines
Regarding the selection of baselines, we introduce seven existing

ER-based methods from offline CL experiments (ER (Riemer et al.,
2018), GEM (Lopez-Paz & Ranzato, 2017), iCaRL (Rebuffi et al., 2017),
FDR (Benjamin, Rolnick, & Kording, 2019), GSS (Aljundi, Lin, Goujaud,
& Bengio, 2019), HAL (Chaudhry, Gordo, Dokania, Torr, & Lopez-
Paz, 2021), and DER++), as well as ER-ACE, which has shown strong
performance in OCL scenarios. Similar to the OCL scenario, for the
nine methods, including PVBF, we employ reservoir sampling for data
sampling. To ensure a fair comparison across methods, we set the

Z. Tao et al. Neural Networks 192 (2025) 107823
Table 4
Experimental results of short task sequence with random task orders on split Cifar10. We conducted experiments in three
scenarios: 𝑀𝑆 = 20, 𝑀𝑆 = 100, 𝑀𝑆 = 500. All entries are 95%-confidence intervals over 15 runs.
 Method MS=20 MS=100 MS=500

 ACC FR ACC FR ACC FR
 ER 26.0 ± 1.3 57.9 ± 3.4 40.8 ± 2.1 28.7 ± 4.6 46.7 ± 4.1 18.7 ± 5.6
 iCaRL 38.6 ± 2.1 40.7 ± 2.9 42.2 ± 1.0 30.7 ± 1.5 43.9 ± 1.5 30.3 ± 2.2
 MIR 26.5 ± 1.4 53.4 ± 3.7 46.1 ± 2.0 22.5 ± 2.3 48.7 ± 2.2 𝟏𝟎.𝟓 ± 1.9
 DER++ 32.0 ± 2.4 45.3 ± 7.0 41.5 ± 2.9 𝟏𝟗.𝟑 ± 5.1 46.8 ± 3.5 15.8 ± 4.1
 ER-ACE 36.7 ± 1.8 39.8 ± 3.0 47.1 ± 1.8 23.9 ± 1.8 54.7 ± 1.9 16.2 ± 2.5
 AR1* 25.3 ± 1.2 75.5 ± 2.0 39.4 ± 2.5 53.2 ± 3.7 53.1 ± 2.3 37.1 ± 3.0
 (ours) PVBF w/o D-CWR 36.9 ± 1.2 37.1 ± 2.7 46.8 ± 1.6 24.4 ± 2.5 56.6 ± 2.3 14.7 ± 2.8
 (ours) PVBF 𝟑𝟗.𝟎 ± 0.8 𝟑𝟓.𝟕 ± 2.0 𝟓𝟎.𝟖 ± 0.9 24.3 ± 2.8 𝟔𝟏.𝟏 ± 1.1 13.5 ± 1.5
Fig. 8. ACC results of random task order experiments.
Table 5
Offline experiment results on split Cifar10. 𝑀𝑆 represents the memory buffer size. We conducted experiments in three
scenarios: 𝑀𝑆 = 200, 𝑀𝑆 = 500, 𝑀𝑆 = 5120. Results by SGD, ER, GEM, iCaRL, FDR, GSS, HAL, and DER++ are cited from
Buzzega et al. (2020), all other entries are 95%-confidence intervals over 15 runs.
 Method MS=200 MS=500 MS=5120

 ACC FR ACC FR ACC FR
 Class-IL
 SGD 19.62 ± 0.05 96.39 ± 0.12 19.62 ± 0.05 96.39 ± 0.12 19.62 ± 0.05 96.39 ± 0.12
 ER 44.79 ± 1.86 61.24 ± 2.62 57.74 ± 0.27 45.35 ± 0.07 82.57 ± 0.52 13.99 ± 1.12
 GEM 25.54 ± 0.76 82.61 ± 1.60 26.20 ± 2.26 74.31 ± 4.62 25.26 ± 3.46 75.27 ± 4.41
 iCaRL 49.02 ± 3.20 28.72 ± 0.49 47.55 ± 3.95 25.71 ± 1.10 55.07 ± 1.55 24.94 ± 0.14
 FDR 30.91 ± 2.74 86.40 ± 0.67 28.71 ± 3.23 85.62 ± 0.36 19.70 ± 0.07 96.64 ± 0.19
 GSS 39.07 ± 5.59 75.25 ± 4.07 49.73 ± 4.78 62.88 ± 2.67 67.27 ± 4.27 58.11 ± 9.12
 HAL 32.36 ± 2.70 69.11 ± 4.21 41.79 ± 4.46 62.21 ± 4.34 59.12 ± 4.41 27.19 ± 7.53
 DER++ 64.88 ± 1.17 32.59 ± 2.32 72.70 ± 1.36 22.38 ± 4.41 85.24 ± 0.49 7.27 ± 0.84
 ER-ACE 63.48 ± 1.24 16.43 ± 1.65 69.95 ± 1.18 12.58 ± 0.79 83.06 ± 0.62 6.14 ± 0.88
 (ours) PBVF 𝟔𝟓.𝟐𝟕 ± 1.18 22.11 ± 1.95 71.30 ± 1.01 14.49 ± 1.25 83.45 ± 0.67 6.12 ± 0.61
 Task-IL
 SGD 61.02 ± 3.33 46.24 ± 2.12 61.02 ± 3.33 46.24 ± 2.12 61.02 ± 3.33 46.24 ± 2.12
 ER 91.19 ± 0.94 7.08 ± 0.64 93.61 ± 0.27 3.54 ± 0.35 96.98 ± 0.17 0.27 ± 0.06
 GEM 90.44 ± 0.94 9.27 ± 2.07 92.16 ± 0.69 9.12 ± 0.21 25.26 ± 3.46 6.91 ± 2.33
 iCaRL 88.99 ± 2.13 2.63 ± 3.48 88.22 ± 2.62 2.66 ± 2.47 92.23 ± 0.84 1.59 ± 0.57
 FDR 91.01 ± 0.68 7.36 ± 0.03 93.29 ± 0.59 4.80 ± 0.00 94.32 ± 0.97 1.93 ± 0.48
 GSS 88.80 ± 2.89 8.56 ± 1.78 91.02 ± 1.57 7.73 ± 3.99 94.19 ± 1.15 7.71 ± 2.31
 HAL 82.51 ± 3.20 12.26 ± 0.02 84.54 ± 2.36 5.41 ± 1.10 88.51 ± 3.32 5.21 ± 0.50
 DER++ 91.92 ± 0.60 5.16 ± 0.21 93.88 ± 0.50 4.66 ± 1.15 96.12 ± 0.21 1.18 ± 0.19
 ER-ACE 92.74 ± 1.18 5.59 ± 0.90 94.35 ± 0.92 3.58 ± 0.72 97.25 ± 0.48 0.78 ± 0.16
 (ours) PBVF 𝟗𝟑.𝟗𝟔 ± 1.06 4.80 ± 1.03 𝟗𝟓.𝟔𝟐 ± 0.71 2.68 ± 0.49 97.12 ± 0.50 0.76 ± 0.12
11

Z. Tao et al. Neural Networks 192 (2025) 107823
Fig. A.9. Neuron counts for different relative changes 𝛿′𝑚,𝑘 (ZS method).
Fig. A.10. Average relative changes in parameters across different layers (ZS method).
Fig. A.11. Neuron counts for different relative changes 𝛿′𝑚,𝑘 (RS method).
same memory buffer size for all methods within the same experimental
setting. Simultaneously, to highlight the memory advantages offered by
continual learning algorithms, we also include experimental results for
the SGD method. This approach does not utilize any experience replay,
and instead performs standard stochastic gradient descent training on
each task sequentially, with the same number of training epochs as the
other algorithms.

4.2.3. Training
During training, as we adopted part of the offline CL experimental

data from prior work, we ensured consistency across all conditions that
influence model performance. Specifically, we adhered to the follow-
ing characteristics of the Mammoth experiment framework (Boschini,
Bonicelli, Buzzega, Porrello, & Calderara, 2022), which is designed
for offline CL experiments: (i) For all training processes, we used the
same SGD optimizer with a fixed batch size of 32 and fixed epochs
50; (ii) All methods were applied to a common, unpretrained ResNet-
18 based backbone; (iii) Experiments were conducted across three
different memory buffer sizes: 200, 500, and 5120. For the seven classic
baselines (ER, GEM, iCaRL, FDR, GSS, HAL, and DER++), we refer-
enced their optimal performance results under previously validated
12
hyperparameter settings for this configuration. For ER-ACE and PVBF,
we conducted experiments with a fixed learning rate of 0.03. The
hyperparameter settings for PVBF were consistent with those used in
the OCL setting, and all experimental results are fully reproducible.

4.2.4. Results
As shown in Table 5, experiments conducted in the offline CL

settings demonstrate that PVBF exhibits stable performance across both
class-IL and task-IL scenarios. In the class-IL setting, PVBF achieves
the highest ACC and the second-best FR when the memory buffer size
𝑀𝑆 = 200. For 𝑀𝑆 = 500 and 𝑀𝑆 = 5120, PVBF consistently shows
the second-highest ACC and either the lowest or second-lowest FR. In
the task-IL scenario, PVBF achieves optimal performance for 𝑀𝑆 = 200
and 𝑀𝑆 = 500, surpassing all baselines. For 𝑀𝑆 = 5120, PVBF’s
performance is on par with ER-ACE. Overall, across both scenarios,
PVBF demonstrates a competitive advantage over existing state-of-the-
art methods in the offline CL setting. Notably, particularly in settings
with a small memory buffer size and in task-IL scenarios, PVBF retains
a clear advantage over DER++, which also demonstrates excellent
performance in the offline CL setting.

Z. Tao et al. Neural Networks 192 (2025) 107823
Fig. A.12. Average relative changes in parameters across different layers in average (RS method).
4.2.5. Analysis
In the offline CL setting, compared to the OCL setting, the model is

able to undergo more extensive training, which alleviates the issue of
parameter variation imbalance. Particularly, in the case of 𝑀𝑆 = 5120,
the model can store a sufficient number of samples during training,
allowing it to effectively revisit knowledge from previous tasks. In
this scenario, the issue of parameter variation imbalance is mitigated
under the conditions of ample sample and training data. As a result,
the experimental outcomes of ER-based methods eventually converge
with those of the ER method. When the number of samples that the
model can store is smaller, the issue of parameter variation imbalance
becomes more pronounced. In such cases, PVBF can alleviate this
issue to some extent, leading to better performance compared to other
methods. In the task-IL scenario, the correlation-induced imbalance
correction strategy employed by PVBF enables the model to retain
knowledge of specific tasks more vividly, which contributes to PVBF’s
superior performance.

5. Conclusion

Mitigating catastrophic forgetting in OCL requires addressing the
prediction bias caused by parameter variation imbalance. To solve this
issue, this paper proposes a Parameter Variation Balancing Framework
(PVBF), which mitigates the correlation-induced imbalance and layer-
wise imbalance respectively. The paper validates PVBF through classifi-
cation experiments on both short and long task sequence OCL settings,
as well as offline settings. The results show that PVBF achieves an
average accuracy improvement of 31%–47% over the ER method. On
the MiniImageNet dataset, it attains 97.5% of the IID method’s accuracy
using only 500 replay samples. In offline CL settings, PVBF consis-
tently outperforms classical CL methods, demonstrating its significant
advantages.

CRediT authorship contribution statement

Zelin Tao: Visualization, Methodology, Formal analysis, Software,
Writing – original draft, Validation, Investigation. Hao Deng: Writing
– original draft, Project administration, Conceptualization, Supervision,
Funding acquisition, Writing – review & editing. Mingqing Liu: Writ-
ing – review & editing, Visualization, Writing – original draft. Lijun
Zhang: Writing – review & editing, Visualization. Shengjie Zhao:
Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
13
Table B.6
Short task sequence experiment results on split Cifar10 using PVBF with different
standardization methods. All entries are 95%-confidence intervals over 15 runs.
 Method MS=20 MS=100 MS=500

 ACC FR ACC FR ACC FR
 PBVF-RR 41.2 ± 0.8 𝟐𝟒.𝟎 ± 2.0 50.8 ± 1.4 18.1 ± 1.8 𝟓𝟗.𝟐 ± 1.8 10.6 ± 1.0
 PBVF-ZS 40.4 ± 1.6 24.4 ± 2.0 𝟓𝟏.𝟔 ± 1.0 𝟏𝟒.𝟖 ± 1.2 59.0 ± 2.1 10.1 ± 2.5
 PBVF-RS 𝟒𝟐.𝟎 ± 1.1 24.2 ± 2.2 49.5 ± 1.6 18.2 ± 1.8 56.3 ± 1.8 13.3 ± 1.2

Acknowledgments

This work was supported in part by the National Key Research and
Development Project under Grant 2023YFC3806002, in part by the
National Natural Science Foundation of China under Grant U23A20382
and 62371342, in part by the Natural Science Foundation of Shanghai
under Grant 23ZR1467300.

Appendix A. Relative changes analysis of different standardiza-
tion methods

We also use the ZS and RS method for obtaining 𝛿′𝑚,𝑘, we recorded
the relative changes at the end of 1 ∼ 4 task in a sequence of short tasks
(a total of 5 tasks) during continual training on Cifar10 (Krizhevsky
et al., 2009) with ER method (Chaudhry et al., 2019) using a backbone
of reduced-Resnet18 (Aljundi, Belilovsky, et al., 2019).

From the results in Fig. A.9 using ZS normalization, we observe that
in all tasks, 66%–68% of the parameters exhibit relative changes below
the mean, and over 90% of the parameters have relative changes within
one standard deviation. This further supports our hypothesis regarding
correlation-induced imbalance, where only a small subset of parameters
show a strong correlation within a task. Similarly, the results in Fig.
A.11 using RS normalization corroborate this observation, with the
number of parameters exhibiting relative changes greater than 2 being
less than 7% after normalization.

Similarly, the results shown in Fig. A.10, which present the average
relative changes of parameters at different layers using ZS normaliza-
tion, and those in Fig. A.12, which show the corresponding results
with RS normalization, further support our hypothesis regarding layer-
wise imbalance. In both cases, the final linear layer (i.e., the out-
put classifier) exhibits significantly higher average relative changes in
parameters compared to the adjacent layers.

Appendix B. OCL experiments results of different standardization
methods

In this section, we present the experimental results of the PVBF
framework under different standardization methods. The results are
evaluated across multiple task sequences with varying sequence lengths
and datasets. We report the ACC and FR for each method.

Z. Tao et al.

f
d
d
e
2
𝑀
P
o
c

t
s
P

Neural Networks 192 (2025) 107823
Fig. C.13. Time consuming Results of different methods applying on split cifar10.
Fig. D.14. The hyperparameter sensitivity heatmap for the probability parameter 𝑝 in
the D-CWR method, where the baseline value of 𝑝 is set to 0.55. Each cell denotes the
relative change in ACC corresponding to 𝑝 = 0.55+0.05×column_index+0.01×row_index,
computed as the deviation from the ACC obtained under the baseline setting of 𝑝 = 0.90.

Table B.7
Long task sequence experiment results on split Cifar100 and split MiniImagenet using
PVBF with different standardization methods. All entries are 95%-confidence intervals
over 15 runs.
 Method Cifar100 MiniImagenet

ACC FR ACC FR
PVBF-RR 21.7 ± 0.7 11.4 ± 0.6 20.9 ± 0.4 9.3 ± 0.5
PVBF-ZS 22.4 ± 0.5 11.0 ± 0.5 20.8 ± 0.5 10.4 ± 0.7
PVBF-RS 22.8 ± 0.7 11.2 ± 0.6 21.8 ± 0.5 9.8 ± 0.5

Short Task Sequence Results. Table B.6 summarizes the results
or the short task sequence experiment conducted on the split Cifar10
ataset. The results highlight the performance of PVBF with three stan-
ardization methods: RR, ZS, and RS. Notably, the PBVF-RR method
xhibits the highest ACC when 𝑀𝑆 = 500 and lowest FR when 𝑀𝑆 =
0. The PBVF-ZS method achieves the best ACC at 51.6 ±1.0 when
𝑆 = 100, and lowest FR when 𝑀𝑆 = 100 and 𝑀𝑆 = 500. The
VBF-RS method achieves best ACC when 𝑀𝑆 = 20. From the results
f the short task sequence, both PVBF-RR and PVBF-ZS demonstrate
omparable performance, outperforming PVBF-RS.
Long Task Sequence Results. Table B.7 presents the results from

he long task sequence experiment conducted on the split Cifar100 and
plit MiniImagenet datasets. Again, we evaluate the performance of
VBF with three standardization methods: RR, ZS, and RS. In the case
14
of Cifar100, PVBF-RS achieves the highest ACC of 22.8, outperforming
both PVBF-RR and PVBF-ZS, and PVBF-ZS achieves the lowest FR. On
the MiniImagenet dataset, PVBF-RS achieves the highest ACC of 21.8,
while PVBF-RR shows a lower forgetting rate of 9.8. In contrast to
the short task sequence results, PVBF-RS outperforms the other two
methods in the long task sequence.

Considering both OCL scenarios, all three standardization meth-
ods exhibit similar performance on the OCL task. From a practical
perspective, RR has the lowest computational complexity among the
three methods. Therefore, we primarily use the RR method in the main
discussions.

Appendix C. Time consuming

In the context of online continual learning (OCL), evaluating the
time consumption of different methods is crucial, as maintaining a low
computational cost allows models to adapt more rapidly to dynamically
evolving data streams. To rigorously assess the runtime efficiency of
each method, we conducted time consumption experiments under a
unified hardware configuration (CPU: 16 vCPUs, Intel(R) Xeon(R) Gold
6430; GPU: NVIDIA RTX 4090 with 24 GB VRAM) and on the same
dataset (split Cifar10). The results are shown in Fig. C.13.

Time consuming of ParamCC. For ParamCC, since computations
are only required at task transitions, it does not affect the training
efficiency of the model. We independently measured the time cost
of this computation process, and found that the time consumed per
execution is less than 1 ms, which is negligible compared to the model’s
overall training time.

Time consuming of PVBF. As demonstrated by the experimental
results, PVBF exhibits comparable computational time with compar-
ative approaches, introducing less than 2 s of additional overhead
compared to ER. Through systematic ablation experiments on E&C and
D-CWR components, we observe that the time complexity of PVBF
primarily stems from the D-CWR module, as removing this component
reduces its computational time to a level comparable with ER-ACE. This
indicates that the computational complexity introduced by the E&C
method remains strictly bounded. Furthermore, the PVBF-E&C vari-
ant (containing only D-CWR and paramCC components) demonstrates
merely 0.4 s of additional computation time compared to ER-ACE, con-
firming that its temporal overhead remains within practical acceptance
thresholds for real-world deployment.

Appendix D. Hyperparameter sensitivity

For the probabilistic hyperparameter 𝑝 in D-CWR, its value signifi-
cantly impacts the PVBF model’s overall ability to mitigate forgetting.

Z. Tao et al. Neural Networks 192 (2025) 107823
To determine the optimal value, we conducted a hyperparameter sen-
sitivity analysis by testing 𝑝 over the range of 0.61 to 1 with 0.01
increments. This evaluation was performed on split Cifar10 under a
short-task sequential OCL scenario with a fixed memory size (MS) of
500. As illustrated in Fig. D.14, the model achieves stable ACCs when 𝑝
ranges between 0.86 and 0.90. Based on these findings, we empirically
set 𝑝 = 0.9 for subsequent experiments in this study.

References

Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Caccia, M., Lin, M., et al. (2019).
Online continual learning with maximal interfered retrieval. Advances in Neural
Information Processing Systems, 32.

Aljundi, R., Lin, M., Goujaud, B., & Bengio, Y. (2019). Gradient based sample selection
for online continual learning. Advances in Neural Information Processing Systems, 32.

Benjamin, A., Rolnick, D., & Kording, K. (2019). Measuring and regularizing networks
in function space. In International conference on learning representations.

Bonicelli, L., Boschini, M., Porrello, A., Spampinato, C., & Calderara, S. (2022). On the
effectiveness of Lipschitz-driven rehearsal in continual learning. Advances in Neural
Information Processing Systems, 35, 31886–31901.

Boschini, M., Bonicelli, L., Buzzega, P., Porrello, A., & Calderara, S. (2022). Class-
incremental continual learning into the extended der-verse. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(5), 5497–5512.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., & Calderara, S. (2020). Dark
experience for general continual learning: a strong, simple baseline. Advances in
Neural Information Processing Systems, 33, 15920–15930.

Caccia, L., Aljundi, R., Asadi, N., Tuytelaars, T., Pineau, J., & Belilovsky, E. (2022). New
insights on reducing abrupt representation change in online continual learning. In
International conference on learning representations.

Castro, F. M., Marin-Jimenez, M. J., Guil, N., Schmid, C., & Alahari, K. (2018). End-
to-end incremental learning. In Proceedings of the European conference on computer
vision.

Chaudhry, A., Dokania, P. K., Ajanthan, T., & Torr, P. H. (2018). Riemannian walk for
incremental learning: Understanding forgetting and intransigence. In Proceedings of
the European conference on computer vision (pp. 532–547).

Chaudhry, A., Gordo, A., Dokania, P., Torr, P., & Lopez-Paz, D. (2021). Using hindsight
to anchor past knowledge in continual learning. In Proceedings of the AAAI
conference on artificial intelligence: vol. 35, no. 8, (pp. 6993–7001).

Chaudhry, A., Ranzato, M., Rohrbach, M., & Elhoseiny, M. (2018). Efficient lifelong
learning with a-gem. arXiv preprint arXiv:1812.00420.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P., Torr, P., et al.
(2019). Continual learning with tiny episodic memories. In Workshop on multi-task
and lifelong reinforcement learning.

Chrysakis, A., & Moens, M.-F. (2023). Online bias correction for task-free continual
learning. ICLR 2023 At OpenReview.

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A. A., et al. (2017).
Pathnet: Evolution channels gradient descent in super neural networks. arXiv
preprint arXiv:1701.08734.

Hurtado, J., Raymond, A., & Soto, A. (2021). Optimizing reusable knowledge for
continual learning via metalearning. Advances in Neural Information Processing
Systems, 34, 14150–14162.

Isele, D., & Cosgun, A. (2018). Selective experience replay for lifelong learning. In
Proceedings of the AAAI conference on artificial intelligence: vol. 32, no. 1.

Ji, X., Henriques, J., Tuytelaars, T., & Vedaldi, A. (2020). Automatic recall machines:
Internal replay, continual learning and the brain. arXiv preprint arXiv:2006.12323.

Jiawei, H., & Micheline, K. (2006). Data mining: concepts and techniques. Morgan
kaufmann.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., et
al. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of
the National Academy of Sciences, 114(13), 3521–3526.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny
images.

Li, Z., & Hoiem, D. (2017). Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(12), 2935–2947.

Lomonaco, V., & Maltoni, D. (2017). Core50: a new dataset and benchmark for
continuous object recognition. In Conference on robot learning (pp. 17–26). PMLR.

Lomonaco, V., Maltoni, D., Pellegrini, L., et al. (2020). Rehearsal-free continual learning
over small non-IID batches. In CVPR workshops: vol. 1, no. 2, (p. 3).
15
Lopez-Paz, D., & Ranzato, M. (2017). Gradient episodic memory for continual learning.
Advances in Neural Information Processing Systems, 30.

Mai, Z., Li, R., Jeong, J., Quispe, D., Kim, H., & Sanner, S. (2022). Online continual
learning in image classification: An empirical survey. Neurocomputing, 469, 28–51.

Mallya, A., Davis, D., & Lazebnik, S. (2018). Piggyback: Adapting a single network to
multiple tasks by learning to mask weights. In Proceedings of the European conference
on computer vision (pp. 67–82).

Mallya, A., & Lazebnik, S. (2018). Packnet: Adding multiple tasks to a single network
by iterative pruning. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 7765–7773).

Maltoni, D., & Lomonaco, V. (2019). Continuous learning in single-incremental-task
scenarios. Neural Networks, 116, 56–73.

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are
complementary learning systems in the hippocampus and neocortex: insights from
the successes and failures of connectionist models of learning and memory.
Psychological Review, 102(3), 419.

Nairne, J. S., & Neath, I. (2003). Sensory and working memory. In Comprehensive
handbook of psychology: vol. 4, (pp. 423–444). Wiley New York.

Pellegrini, L., Graffieti, G., Lomonaco, V., & Maltoni, D. (2020). Latent replay for
real-time continual learning. In 2020 IEEE/RSJ international conference on intelligent
robots and systems (pp. 10203–10209). IEEE.

Prabhu, A., Torr, P. H., & Dokania, P. K. (2020). Gdumb: a simple approach that
questions our progress in continual learning. In Computer vision–ECCV 2020: 16th
European conference, glasgow, UK, August 23–28, 2020, proceedings, part II 16 (pp.
524–540). Springer.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., & Lampert, C. H. (2017). Icarl: Incremental
classifier and representation learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 2001–2010).

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., et al. (2018). Learning to
learn without forgetting by maximizing transfer and minimizing interference. arXiv
preprint arXiv:1810.11910.

Shin, H., Lee, J. K., Kim, J., & Kim, J. (2017). Continual learning with deep generative
replay. Advances in Neural Information Processing Systems, 30.

Soutif-Cormerais, A., Carta, A., Cossu, A., Hurtado, J., Lomonaco, V., Van de Weijer, J.,
et al. (2023). A comprehensive empirical evaluation on online continual learning.
In Proceedings of the IEEE/CVF international conference on computer vision (pp.
3518–3528).

Sun, R. (2019). Optimization for deep learning: theory and algorithms. arXiv preprint
arXiv:1912.08957.

Van de Ven, G. M., & Tolias, A. S. (2019). Three scenarios for continual learning. arXiv
preprint arXiv:1904.07734.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. (2016). Matching networks
for one shot learning. Advances in Neural Information Processing Systems, 29.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS), 11(1), 37–57.

Von Oswald, J., Henning, C., Grewe, B. F., & Sacramento, J. (2019). Continual learning
with hypernetworks. arXiv preprint arXiv:1906.00695.

Wang, L., Zhang, X., Su, H., & Zhu, J. (2024). A comprehensive survey of continual
learning: theory, method and application. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Wang, F.-Y., Zhou, D.-W., Ye, H.-J., & Zhan, D.-C. (2022). Foster: Feature boosting
and compression for class-incremental learning. In European conference on computer
vision (pp. 398–414). Springer.

Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., et al. (2019). Large scale incremental
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 374–382).

Yoon, J., Yang, E., Lee, J., & Hwang, S. J. (2017). Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547.

Yuan, W., Yin, H., He, T., Chen, T., Wang, Q., & Cui, L. (2022). Unified question
generation with continual lifelong learning. In Proceedings of the ACM web conference
2022 (pp. 871–881).

Yuan, W., Zhang, Q., He, T., Fang, C., Hung, N. Q. V., Hao, X., et al. (2022). Circle:
continual repair across programming languages. In Proceedings of the 31st ACM
SIGSOFT international symposium on software testing and analysis (pp. 678–690).

Zenke, F., Poole, B., & Ganguli, S. (2017). Continual learning through synaptic
intelligence. In International conference on machine learning (pp. 3987–3995). PMLR.

http://refhub.elsevier.com/S0893-6080(25)00703-8/sb1
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb1
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb1
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb1
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb1
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb2
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb2
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb2
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb4
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb4
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb4
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb4
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb4
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb5
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb5
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb5
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb5
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb5
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb6
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb6
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb6
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb6
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb6
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb7
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb7
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb7
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb7
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb7
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb8
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb8
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb8
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb8
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb8
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb9
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb9
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb9
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb9
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb9
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb10
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb10
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb10
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb10
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb10
http://arxiv.org/abs/1812.00420
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb12
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb12
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb12
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb12
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb12
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb13
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb13
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb13
http://arxiv.org/abs/1701.08734
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb15
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb15
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb15
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb15
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb15
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb16
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb16
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb16
http://arxiv.org/abs/2006.12323
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb18
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb18
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb18
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb19
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb19
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb19
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb19
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb19
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb20
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb20
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb20
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb21
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb21
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb21
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb22
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb22
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb22
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb23
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb23
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb23
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb24
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb24
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb24
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb25
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb25
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb25
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb26
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb26
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb26
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb26
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb26
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb27
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb27
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb27
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb27
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb27
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb28
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb28
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb28
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb29
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb29
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb29
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb29
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb29
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb29
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb29
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb30
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb30
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb30
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb31
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb31
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb31
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb31
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb31
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb32
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb32
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb32
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb32
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb32
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb32
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb32
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb33
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb33
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb33
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb33
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb33
http://arxiv.org/abs/1810.11910
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb35
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb35
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb35
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb36
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb36
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb36
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb36
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb36
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb36
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb36
http://arxiv.org/abs/1912.08957
http://arxiv.org/abs/1904.07734
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb39
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb39
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb39
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb40
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb40
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb40
http://arxiv.org/abs/1906.00695
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb42
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb42
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb42
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb42
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb42
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb43
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb43
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb43
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb43
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb43
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb44
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb44
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb44
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb44
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb44
http://arxiv.org/abs/1708.01547
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb46
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb46
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb46
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb46
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb46
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb47
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb47
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb47
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb47
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb47
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb48
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb48
http://refhub.elsevier.com/S0893-6080(25)00703-8/sb48

	PVBF: A framework for mitigating parameter variation imbalance in online continual learning
	Introduction
	Related Work
	CL Methods
	ER-based Methods
	Output Correction Methods

	Methodology
	Parameter Variation Evaluate
	Overview of Parameter Variation Balancing Framework
	Parameter Correlation Calculate
	Encourage and Consolidate
	Dual-Layer Copy Weights with Re-init

	Experiments
	OCL Experiments
	Datasets and Setup
	Baselines
	Architectures and Hyperparameters
	Metrics
	Short Task Sequence OCL Experiments
	Long Task Sequence OCL Experiments
	Ablation Study
	Random Task Order Experiments

	Offline CL Experiments
	Datasets and Setup
	Baselines
	Training
	Results
	Analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Relative Changes Analysis of Different Standardization Methods
	Appendix B. OCL Experiments Results of Different Standardization Methods
	Appendix C. Time Consuming
	Appendix D. Hyperparameter Sensitivity
	References

