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Background

Empirical Risk
Minimization (ERM)

min
h∈H

1
n

n∑

i=1

ℓ(h(xi), yi))

H is a hypothesis space

ℓ(·, ·) is a loss function

(xi , yi)’s are training
samples

Batch Learning

https://localiq.com/blog/what-happens-in-an-internet-minute/
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Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.
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Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

The Learning Procedure

1: for t = 1, 2, . . . ,T do

4: end for
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Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)

4: end for

Learner Adversary

A classifier

+

+

An example , × ±1

A loss ( ) = max 1 , 0
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Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers loss ft(wt) and updates wt

4: end for

Learner Adversary

A classifier

+

+

An example , × ±1

A loss ( ) = max 1 , 0
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Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers loss ft(wt) and updates wt

4: end for

Cumulative Loss

Cumulative Loss =
T∑

t=1

ft(wt)
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Regret

Cumulative Loss

Cumulative Loss =
T∑

t=1

ft(wt)
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Regret

Cumulative Loss

Cumulative Loss =
T∑

t=1

ft(wt)

Regret

Regret(T ) =
T∑

t=1

ft(wt) − min
w∈W

T∑

t=1

ft(w)
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Regret

Cumulative Loss

Cumulative Loss =
T∑

t=1

ft(wt)

Regret

Regret(T ) =
T∑

t=1

ft(wt)

︸ ︷︷ ︸

Cumulative Loss of Online Learner

− min
w∈W

T∑

t=1

ft(w)

︸ ︷︷ ︸

Minimal Loss of Batch Learner
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Regret

Cumulative Loss

Cumulative Loss =
T∑

t=1

ft(wt)

Regret

Regret(T ) =
T∑

t=1

ft(wt)

︸ ︷︷ ︸

Cumulative Loss of Online Learner

− min
w∈W

T∑

t=1

ft(w)

︸ ︷︷ ︸

Minimal Loss of Batch Learner

Hannan Consistent

lim sup
T→∞

1
T

(
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w)

)

= 0, with probability 1

Zhang Smoothed OCO

Learning And Mining from DatA

A DAML



Online Learning Smoothed OCO Conclusion Regret Dynamic Regret Adaptive Regret

Regret

Cumulative Loss

Cumulative Loss =
T∑

t=1

ft(wt)

Regret

Regret(T ) =
T∑

t=1

ft(wt)

︸ ︷︷ ︸

Cumulative Loss of Online Learner

− min
w∈W

T∑

t=1

ft(w)

︸ ︷︷ ︸

Minimal Loss of Batch Learner

Hannan Consistent
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w) = o(T ), with probability 1

Zhang Smoothed OCO

Learning And Mining from DatA

A DAML



Online Learning Smoothed OCO Conclusion Regret Dynamic Regret Adaptive Regret

Online Convex Optimization (OCO) [Zinkevich, 2003]

The Learning Procedure
1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers loss ft(wt) and updates wt

4: end for
where W and ft ’s are convex
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Online Convex Optimization (OCO) [Zinkevich, 2003]

The Learning Procedure
1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers loss ft(wt) and updates wt

4: end for
where W and ft ’s are convex

Online Gradient Descent (OGD)

wt+1 = ΠW [wt − ηt∇ft(wt)]

where
ΠW [x] = argmin

w∈W

‖w − x‖

is the projection operator
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Existing Results for OCO

Convex Functions [Zinkevich, 2003]

Online Gradient Descent (OGD)

Regret(T ) = O
(√

T
)

Strongly Convex Functions [Hazan et al., 2007]

Online Gradient Descent (OGD)

Regret(T ) = O (logT )

Exponentially Concave Functions [Hazan et al., 2007]

Online Newton Step (ONS)

Regret(T ) = O (d logT )
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Learning in Changing Environments

Regret → Static Regret

Regret(T ) =
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(w∗)

where w∗ ∈ argminw∈W

∑T
t=1 ft(w)

One of the decision is reasonably good during T rounds
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Learning in Changing Environments

Regret → Static Regret

Regret(T ) =
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(w∗)

where w∗ ∈ argminw∈W

∑T
t=1 ft(w)

One of the decision is reasonably good during T rounds

Changing Environments

Different decisions will be good in different periods

Recommendation: the interests of a user could change

Stock market: the best stock changes over time
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Dynamic Regret

D-Regret(u1, . . . ,uT ) =

T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence
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Dynamic Regret

D-Regret(u1, . . . ,uT ) =

T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence

Online Gradient Descent (OGD) [Zinkevich, 2003]

D-Regret(u1, . . . ,uT ) = O
(√

T · (1 + PT )
)

where PT =
∑T

t=1 ‖ut+1 − ut‖
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Dynamic Regret

D-Regret(u1, . . . ,uT ) =

T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence

Online Gradient Descent (OGD) [Zinkevich, 2003]

D-Regret(u1, . . . ,uT ) = O
(√

T · (1 + PT )
)

where PT =
∑T

t=1 ‖ut+1 − ut‖

The First Lower Bound [Zhang et al., 2018a]

D-Regret(u1, . . . ,uT ) = Ω
(√

T ·
√

1 + PT

)

An Optimal Algorithm—Ader [Zhang et al., 2018a]

D-Regret(u1, . . . ,uT ) = O
(√

T ·
√

1 + PT

)
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Adaptive Regret

Adaptive Regret [Hazan and Seshadhri, 2007, Daniely et al., 2015]

SA-Regret(T , τ) = max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑

t=s

ft(wt)− min
w∈W

s+τ−1∑

t=s

ft(w)

)

Minimize the static regret over all intervals of length τ
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Adaptive Regret

Adaptive Regret [Hazan and Seshadhri, 2007, Daniely et al., 2015]

SA-Regret(T , τ) = max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑

t=s

ft(wt)− min
w∈W

s+τ−1∑

t=s

ft(w)

)

Minimize the static regret over all intervals of length τ

f1(·), f2(·), . . . , fτ (·), fτ+1(·) , . . . , fs(·), fs+1(·), . . . , fs+τ−1(·), fs+τ (·) , . . .
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Adaptive Regret

Adaptive Regret [Hazan and Seshadhri, 2007, Daniely et al., 2015]

SA-Regret(T , τ) = max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑

t=s

ft(wt)− min
w∈W

s+τ−1∑

t=s

ft(w)

)

Minimize the static regret over all intervals of length τ

︸ ︷︷ ︸
τ∑

t=1
ft (wt )− min

w∈W

τ∑

t=1
ft (w)

f1(·), f2(·), . . . , fτ (·), fτ+1(·) , . . . , fs(·), fs+1(·), . . . , fs+τ−1(·), fs+τ (·) , . . .
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Adaptive Regret

Adaptive Regret [Hazan and Seshadhri, 2007, Daniely et al., 2015]

SA-Regret(T , τ) = max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑

t=s

ft(wt)− min
w∈W

s+τ−1∑

t=s

ft(w)

)

Minimize the static regret over all intervals of length τ

︸ ︷︷ ︸
τ∑

t=1
ft (wt )− min

w∈W

τ∑

t=1
ft (w)

f1(·),

τ+1∑

t=2
ft (wt )− min

w∈W

τ+1∑

t=2
ft (w)

︷ ︸︸ ︷

f2(·), . . . , fτ (·), fτ+1(·) , . . . , fs(·), fs+1(·), . . . , fs+τ−1(·), fs+τ (·) , . . .
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Adaptive Regret

Adaptive Regret [Hazan and Seshadhri, 2007, Daniely et al., 2015]

SA-Regret(T , τ) = max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑
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ft(wt)− min
w∈W
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ft(w)

)

Minimize the static regret over all intervals of length τ
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τ∑

t=1
ft (wt )− min

w∈W

τ∑

t=1
ft (w)

f1(·),

τ+1∑

t=2
ft (wt )− min

w∈W
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ft (w)
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︸ ︷︷ ︸
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t=s
ft (wt )− min

w∈W
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t=s
ft (w)
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Adaptive Regret

Adaptive Regret [Hazan and Seshadhri, 2007, Daniely et al., 2015]

SA-Regret(T , τ) = max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑

t=s

ft(wt)− min
w∈W

s+τ−1∑

t=s

ft(w)

)

Minimize the static regret over all intervals of length τ

︸ ︷︷ ︸
τ∑

t=1
ft (wt )− min

w∈W

τ∑

t=1
ft (w)

f1(·),

τ+1∑

t=2
ft (wt )− min

w∈W

τ+1∑

t=2
ft (w)

︷ ︸︸ ︷

f2(·), . . . , fτ (·), fτ+1(·) , . . . ,
︸ ︷︷ ︸

s+τ−1∑

t=s
ft (wt )− min

w∈W

s+τ−1∑

t=s
ft (w)

fs(·),

s+τ∑

t=s+1
ft (wt )− min

w∈W

s+τ∑

t=s+1
ft (w)

︷ ︸︸ ︷

fs+1(·), . . . , fs+τ−1(·), fs+τ (·) , . . .
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Existing Results on Adaptive Regret

Convex Functions [Jun et al., 2017]

SA-Regret(T , τ) = O
(√

τ logT
)

Strongly Convex Functions [Zhang et al., 2018b]

SA-Regret(T , τ) = O (log τ logT )

Exponentially Concave Functions [Hazan and Seshadhri, 2007]

SA-Regret(T , τ) = O (d log τ logT )
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Existing Results on Adaptive Regret

Convex Functions [Jun et al., 2017]

SA-Regret(T , τ) = O
(√

τ logT
)

Strongly Convex Functions [Zhang et al., 2018b]

SA-Regret(T , τ) = O (log τ logT )

Exponentially Concave Functions [Hazan and Seshadhri, 2007]

SA-Regret(T , τ) = O (d log τ logT )

A Universal Algorithm–UMA [Zhang et al., 2021b]

SA-Regret(T , τ) =







O
(√

τ logT
)

, Convex

O (log τ logT )) , Strongly Convex

O (d log τ logT )) , Exponentially Concave
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Smoothed Online Learning

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers a hitting cost ft(wt),

and a switching cost m(wt ,wt−1)

4: end for

For example, m(wt ,wt−1) = ‖wt − wt−1‖ or 1
2‖wt − wt−1‖2
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Smoothed Online Learning

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers a hitting cost ft(wt),

and a switching cost m(wt ,wt−1)

4: end for

For example, m(wt ,wt−1) = ‖wt − wt−1‖ or 1
2‖wt − wt−1‖2

Applications

Stock market: the transaction fee

Data center: the wear-and-tear cost

Store relocation: the decoration cost
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Smoothed Online Learning

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers a hitting cost ft(wt),

and a switching cost m(wt ,wt−1)

4: end for

For example, m(wt ,wt−1) = ‖wt − wt−1‖ or 1
2‖wt − wt−1‖2

Cumulative Loss (Hitting Cost + Switching Cost)

Cumulative Loss =
T∑

t=1

ft(wt) + m(wt ,wt−1)
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Smoothed Online Learning

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers a hitting cost ft(wt),

and a switching cost m(wt ,wt−1)

4: end for

For example, m(wt ,wt−1) = ‖wt − wt−1‖ or 1
2‖wt − wt−1‖2

Smoothed Online Convex Optimization

ft ’s are convex functions

W is a convex set
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Smoothed Online Learning

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Adversary chooses a function ft(·),

then Learner picks a decision wt ∈ W
3: Learner suffers a hitting cost ft(wt),

and a switching cost m(wt ,wt−1)

4: end for

For example, m(wt ,wt−1) = ‖wt − wt−1‖ or 1
2‖wt − wt−1‖2

The Lookahead Setting

The problem is nontrivial even when the learner can observe
ft(·) before deciding wt .
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Dynamic Regret with Switching Cost

T∑

t=1

(
ft(wt) + m(wt ,wt−1)

)
−

T∑

t=1

(
ft(ut) + m(ut ,ut−1)

)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence

The standard setting

The lookahead setting
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Dynamic Regret with Switching Cost

T∑

t=1

(
ft(wt) + m(wt ,wt−1)

)
−

T∑

t=1

(
ft(ut) + m(ut ,ut−1)

)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence

The standard setting

The lookahead setting

Dynamic Regret

D-Regret(u1, . . . ,uT ) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

An Optimal Algorithm—Ader [Zhang et al., 2018a]

D-Regret(u1, . . . ,uT ) = O
(√

T ·
√

1 + PT

)
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The Standard Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D
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The Standard Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D

Smoothed Ader (SAder) [Zhang et al., 2021a]
T∑

t=1

(

ft(wt) + ‖wt − wt−1‖
)

−
T∑

t=1

ft(ut) = O
(√

T ·
√

1 + PT

)

where PT =
∑T

t=1 ‖ut+1 − ut‖
Optimal according to the lower bound of dynamic regret
[Zhang et al., 2018a]

The switching cost does not make the problem much
harder, although we need to modify the algorithm
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The Standard Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D

Online Gradient Descent (OGD)

wt+1 = ΠW [wt − η∇ft(wt)]

Dynamic regret with switching cost
T∑

t=1

(

ft(wt)+‖wt −wt−1‖
)

−
T∑

t=1

ft(ut) = O
(

1 + PT

η
+ ηT

)

We obtain an O(
√

T ·
√

1 + PT ) bound if η =
√

(1 + PT )/T
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The Standard Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D

Online Gradient Descent (OGD)

wt+1 = ΠW [wt − η∇ft(wt)]

Dynamic regret with switching cost
T∑

t=1

(

ft(wt)+‖wt −wt−1‖
)

−
T∑

t=1

ft(ut) = O
(

1 + PT

η
+ ηT

)

We obtain an O(
√

T ·
√

1 + PT ) bound if η =
√

(1 + PT )/T

But the path-length PT is unknown.
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Smoothed Ader (SAder) [Zhang et al., 2021a]

The Basic Idea

Discretize the possible values of PT ∈ [0,TD]

Create one expert for each discrete PT , and combine them
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Smoothed Ader (SAder) [Zhang et al., 2021a]

The Basic Idea

Discretize the possible values of PT ∈ [0,TD]

Create one expert for each discrete PT , and combine them

A Set of Experts

Online Gradient Descent (OGD) with η = 1

· · ·
Online Gradient Descent (OGD) with η = 1/

√
T

wη
t+1 = ΠW

[
wη

t − η∇ft(w
η
t )
]
, η ∈ H
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Smoothed Ader (SAder) [Zhang et al., 2021a]

The Basic Idea

Discretize the possible values of PT ∈ [0,TD]

Create one expert for each discrete PT , and combine them

A Set of Experts

Online Gradient Descent (OGD) with η = 1

· · ·
Online Gradient Descent (OGD) with η = 1/

√
T

wη
t+1 = ΠW

[
wη

t − η∇ft(w
η
t )
]
, η ∈ H

A Meta-algorithm

The goal: aggregate the predictions from experts

The challenge: ensure a small switching cost

Aggregation
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Smoothed Ader (SAder) [Zhang et al., 2021a]

The Basic Idea

Discretize the possible values of PT ∈ [0,TD]

Create one expert for each discrete PT , and combine them

A Set of Experts

Online Gradient Descent (OGD) with η = 1

· · ·
Online Gradient Descent (OGD) with η = 1/

√
T

wη
t+1 = ΠW

[
wη

t − η∇ft(w
η
t )
]
, η ∈ H

A Meta-algorithm (Hedge with switching cost)

wt =
∑

η∈H

ωη
t wη

t , ωη
t+1 =

ωη
t e−αℓt (w

η

t )

∑

µ∈H ωµ
t e−αℓt (w

µ

t )

ℓt(w
η
t ) = 〈∇ft(wt),w

η
t − wt〉+ ‖wη

t − wη
t−1‖

Aggregation
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The Lookahead Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D
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The Lookahead Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D

Lookahead SAder [Zhang et al., 2021a]
T∑

t=1

(

ft(wt) + ‖wt − wt−1‖
)

−
T∑

t=1

ft(ut) = O
(√

T ·
√

1 + PT

)

where PT =
∑T

t=1 ‖ut+1 − ut‖
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The Lookahead Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D

Lookahead SAder [Zhang et al., 2021a]
T∑

t=1

(

ft(wt) + ‖wt − wt−1‖
)

−
T∑

t=1

ft(ut) = O
(√

T ·
√

1 + PT

)

where PT =
∑T

t=1 ‖ut+1 − ut‖

The first Ω(
√

T ·
√

1 + PT ) lower bound for lookahead setting
[Zhang et al., 2021a]

Our lookahead SAder is optimal
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The Lookahead Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
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(

ft(wt) + ‖wt − wt−1‖
)

−
T∑

t=1

ft(ut) = O
(√

T ·
√

1 + PT

)

where PT =
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T ·
√
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Lookahead SAder [Zhang et al., 2021a]

The Basic Idea

Discretize the possible values of PT ∈ [0,TD]

Create one expert for each discrete PT , and combine them
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Lookahead SAder [Zhang et al., 2021a]

The Basic Idea

Discretize the possible values of PT ∈ [0,TD]

Create one expert for each discrete PT , and combine them

A Set of Experts
Balancing two costs directly with η = 1
· · ·
Balancing two costs directly η = 1/

√
T

min
x∈X

ft(x) +
1
2η

‖x − xη
t−1‖2, η ∈ H
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Lookahead SAder [Zhang et al., 2021a]

The Basic Idea

Discretize the possible values of PT ∈ [0,TD]

Create one expert for each discrete PT , and combine them

A Set of Experts
Balancing two costs directly with η = 1
· · ·
Balancing two costs directly η = 1/

√
T

min
x∈X

ft(x) +
1
2η

‖x − xη
t−1‖2, η ∈ H

A Meta-algorithm (Lookahead Hedge with switching cost)

wt =
∑

η∈H

ωη
t wη

t , ωη
t =

ωη
t−1e−βℓt (w

η

t )

∑

µ∈H ωµ
t−1e−βℓt (w

µ

t )

ℓt(w
η
t ) = 〈∇ft(wt),w

η
t − wt〉+ ‖wη

t − wη
t−1‖

Aggregation
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Outline

1 Online Learning
Regret
Dynamic Regret
Adaptive Regret

2 Smoothed Online Convex Optimization
Dynamic Regret with Switching Cost
Adaptive Regret with Switching Cost
Competitive Ratio

3 Conclusion
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Adaptive Regret with Switching Cost

SA-Regret-S(T , τ)

= max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑

t=s

(
ft(wt) + m(wt ,wt−1)

)
− min

w∈W

s+τ−1∑

t=s

ft(w)

)

The standard setting
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Adaptive Regret with Switching Cost

SA-Regret-S(T , τ)

= max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑

t=s

(
ft(wt) + m(wt ,wt−1)

)
− min

w∈W

s+τ−1∑

t=s

ft(w)

)

The standard setting

Adaptive Regret

SA-Regret(T , τ) = max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑

t=s

ft(wt)− min
w∈W

s+τ−1∑

t=s

ft(w)

)

Convex Functions [Jun et al., 2017]

SA-Regret(T , τ) = O
(√

τ logT
)
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The Standard Setting
Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D

Smoothed OGD [Zhang et al., 2022]
1 Adaptive regret with switching cost

s+τ−1∑

t=s

(
ft(wt)+‖wt−wt+1‖−ft(w)

)
= O

(√

τ logT
)
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The Standard Setting
Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D

Smoothed OGD [Zhang et al., 2022]
1 Adaptive regret with switching cost

s+τ−1∑

t=s

(
ft(wt)+‖wt−wt+1‖−ft(w)

)
= O

(√

τ logT
)

2 Dynamic regret with switching cost in every interval
s+τ−1∑

t=s

(
ft(wt)+‖wt−wt+1‖−ft(ut)

)
= O

(√

τ(1 + Pr ,s) logT
)

where Pr ,s =
∑s

t=r ‖ut − ut+1‖
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Existing Framework for Adaptive Regret

An Expert-algorithm

Online Gradient Descent (OGD) [Zinkevich, 2003]

wt+1 = ΠW [wt − ηt∇ft(wt)]
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Existing Framework for Adaptive Regret

An Expert-algorithm

Online Gradient Descent (OGD) [Zinkevich, 2003]

wt+1 = ΠW [wt − ηt∇ft(wt)]

A Set of Intervals

Geometric covering intervals [Daniely et al., 2015]
t 1 2 3 4 5 6 7 · · ·

I0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] · · ·
I1 [ ] [ ] [ ] · · ·
I2 [ ] · · ·
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Existing Framework for Adaptive Regret

An Expert-algorithm

Online Gradient Descent (OGD) [Zinkevich, 2003]

wt+1 = ΠW [wt − ηt∇ft(wt)]

A Set of Intervals

Geometric covering intervals [Daniely et al., 2015]
t 1 2 3 4 5 6 7 · · ·

I0 [OGD(f1)] [OGD(f2)] [OGD(f3)] [OGD(f4)] [OGD(f5)] [OGD(f6)] [OGD(f7)] · · ·
I1 [OGD(f2, f3)] [OGD(f4, f5)] [OGD(f6, f7)] · · ·
I2 [OGD(f4, f5, f6, f7)] · · ·
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Existing Framework for Adaptive Regret

An Expert-algorithm

Online Gradient Descent (OGD) [Zinkevich, 2003]

wt+1 = ΠW [wt − ηt∇ft(wt)]

A Set of Intervals

Geometric covering intervals [Daniely et al., 2015]
t 1 2 3 4 5 6 7 · · ·

I0 [OGD(f1)] [OGD(f2)] [OGD(f3)] [OGD(f4)] [OGD(f5)] [OGD(f6)] [OGD(f7)] · · ·
I1 [OGD(f2, f3)] [OGD(f4, f5)] [OGD(f6, f7)] · · ·
I2 [OGD(f4, f5, f6, f7)] · · ·

A Meta-algorithm (which supports sleeping experts)

Sleeping Coin Betting [Jun et al., 2017]
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Existing Framework for Adaptive Regret

An Expert-algorithm

Online Gradient Descent (OGD) [Zinkevich, 2003]

wt+1 = ΠW [wt − ηt∇ft(wt)]

A Set of Intervals

Geometric covering intervals [Daniely et al., 2015]
t 1 2 3 4 5 6 7 · · ·

I0 [OGD(f1)] [OGD(f2)] [OGD(f3)] [OGD(f4)] [OGD(f5)] [OGD(f6)] [OGD(f7)] · · ·
I1 [OGD(f2, f3)] [OGD(f4, f5)] [OGD(f6, f7)] · · ·
I2 [OGD(f4, f5, f6, f7)] · · ·

A Meta-algorithm (which supports sleeping experts)

Sleeping Coin Betting [Jun et al., 2017]

The dynamic change of experts makes it difficult to bound the
switching cost of the meta-algorithm.
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Smoothed OGD [Zhang et al., 2022]

The Basic Idea

Create a set of OGD with different step sizes

Combine them sequentially by Discounted-Normal-Predictor
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Smoothed OGD [Zhang et al., 2022]

The Basic Idea

Create a set of OGD with different step sizes

Combine them sequentially by Discounted-Normal-Predictor

A Set of Experts
OGD with η = 1/

√
T

OGD with η = 2/
√

T
OGD with η = 4/

√
T

· · ·
OGD with η = 1
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Smoothed OGD [Zhang et al., 2022]

The Basic Idea

Create a set of OGD with different step sizes

Combine them sequentially by Discounted-Normal-Predictor

A Set of Experts
OGD with η = 1/

√
T

OGD with η = 2/
√

T
OGD with η = 4/

√
T

· · ·
OGD with η = 1

A Meta-algorithm

The goal: aggregate the predictions from experts

The 1st challenge: support the adaptive regret

The 2nd challenge: ensure a small switching cost

Aggregation
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Smoothed OGD [Zhang et al., 2022]

The Basic Idea

Create a set of OGD with different step sizes

Combine them sequentially by Discounted-Normal-Predictor

A Set of Experts
OGD with η = 1/

√
T

OGD with η = 2/
√

T
OGD with η = 4/

√
T

· · ·
OGD with η = 1

A Meta-algorithm (Discounted-Normal-Predictor)

It automatically controls the switching cost
[Kapralov and Panigrahy, 2010] [Daniely and Mansour, 2019]

We further utilize conservative updating

Sequential
Aggregation
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Discounted-Normal-Predictor [Kapralov and Panigrahy, 2010]

Designed for the bit prediction problem

Receive a sequence of bits b1, · · · , bT ∈ [−1, 1]

Output confidence levels c1, . . . , cT ∈ [−1, 1]

Maximize the cumulative payoff
∑T

t=1 ctbt
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Discounted-Normal-Predictor [Kapralov and Panigrahy, 2010]

Designed for the bit prediction problem

Receive a sequence of bits b1, · · · , bT ∈ [−1, 1]

Output confidence levels c1, . . . , cT ∈ [−1, 1]

Maximize the cumulative payoff
∑T

t=1 ctbt

The Learning Procedure
1: for t = 1, 2, . . . ,T do
2: Predict g(xt) where

g(x) = sign(x) ·min

(

Z · erf
( |x |

4
√

n

)

e
x2

16n , 1
)

3: Receive bt

4: Set

xt+1 =

{
ρxt + bt , |xt | < U(n) or g(xt)bt < 0;
ρxt , otherwise

5: end for
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Discounted-Normal-Predictor [Kapralov and Panigrahy, 2010]

Aggregate two experts E1 and E2

Define the bit as bt = ℓ1
t − ℓ2

t ∈ [−1, 1]

Output a confidence level ct ∈ [0, 1]

Predict the weighted average ctw1
t + (1 − ct)w2

t

The Learning Procedure
1: for t = 1, 2, . . . ,T do
2: Predict g(xt) where

g(x) = sign(x) ·min

(

Z · erf
( |x |

4
√

n

)

e
x2

16n , 1
)

3: Receive bt

4: Set

xt+1 =

{
ρxt + bt , |xt | < U(n) or g(xt)bt < 0;
ρxt , otherwise

5: end for
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Discounted-Normal-Predictor [Kapralov and Panigrahy, 2010]

Aggregate two experts E1 and E2

Define the bit as bt = ℓ1
t − ℓ2

t ∈ [−1, 1]

Output a confidence level ct ∈ [0, 1]

Predict the weighted average ctw1
t + (1 − ct)w2

t

The Underlying Rationale

Ordinary Differential Equation

g′(x) =
x

8L2 g(x) +
Z

2
√

nπ
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Outline

1 Online Learning
Regret
Dynamic Regret
Adaptive Regret

2 Smoothed Online Convex Optimization
Dynamic Regret with Switching Cost
Adaptive Regret with Switching Cost
Competitive Ratio

3 Conclusion
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Competitive Ratio
∑T

t=1

(
ft(wt) + m(wt ,wt−1)

)

minu0,u1,...,uT∈X

∑T
t=1

(
ft(ut) + m(ut ,ut−1)

)
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Competitive Ratio
∑T

t=1

(
ft(wt) + m(wt ,wt−1)

)

minu0,u1,...,uT∈X

∑T
t=1

(
ft(ut) + m(ut ,ut−1)

)

Convex Body Chasing (CBC)

Select one point from convex bodies W1, . . . ,WT ⊆ R
d

Minimize the total movement
∑ ‖wt − wt−1‖
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Competitive Ratio
∑T

t=1

(
ft(wt) + m(wt ,wt−1)

)

minu0,u1,...,uT∈X

∑T
t=1

(
ft(ut) + m(ut ,ut−1)

)

Convex Body Chasing (CBC)

Select one point from convex bodies W1, . . . ,WT ⊆ R
d

Minimize the total movement
∑ ‖wt − wt−1‖

Lower bound: Ω(
√

d) [Friedman and Linial, 1993]

Upper bound: O(min(d ,
√

d logT ))
[Argue et al., 2020, Sellke, 2020]
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Competitive Ratio
∑T

t=1

(
ft(wt) + m(wt ,wt−1)

)

minu0,u1,...,uT∈X

∑T
t=1

(
ft(ut) + m(ut ,ut−1)

)

Research on Competitive Ratio

Identify sufficient conditions and develop algorithms for

dimension-free competitive ratio in lookahead setting

Polyhedral functions [Chen et al., 2018, Lin et al., 2020]
[Zhang et al., 2021a]

Quadratic growth functions [Goel et al., 2019, Lin et al., 2020]
[Zhang et al., 2021a]

Strongly convex functions [Goel et al., 2019]

The function can not be too flat.
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Applications

Online Convex Optimization with Memory [Anava et al., 2015]

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·) : Wm+1 7→ R

3: Learner suffers loss

ft(wt−m, . . . ,wt)

and updates wt

4: end for
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Applications

Online Convex Optimization with Memory [Anava et al., 2015]

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·) : Wm+1 7→ R

3: Learner suffers loss

ft(wt−m, . . . ,wt)

and updates wt

4: end for

Online Non-stochastic Control [Agarwal et al., 2019]

The loss ct(xt ,wt) depends on the current state xt and the
decision wt

Linear dynamical system

xt+1 = Axt + Bwt + δt

where δt denotes the disturbance
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Conclusion and Future Work

Smoothed Online Learning

Minimize the sum of hitting cost and switching cost

Dynamic regret with switching cost, Adaptive regret with
switching cost, Competitive ratio
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Conclusion and Future Work

Smoothed Online Learning

Minimize the sum of hitting cost and switching cost

Dynamic regret with switching cost, Adaptive regret with
switching cost, Competitive ratio

Future Work

Improve the rates under additional assumptions

Control the switching cost directly [Wang et al., 2021]

min

T∑

t=1

ft(wt) s. t.

T∑

t=1

‖wt − wt−1‖ ≤ B

The relation with continual learning
T∑

t=1

ft(wt)
︸ ︷︷ ︸

Perform well on each task

+ ‖wt − wt−1‖
︸ ︷︷ ︸

Avoid catastrophic forgetting

Zhang Smoothed OCO

Learning And Mining from DatA

A DAML



Online Learning Smoothed OCO Conclusion

Reference I

Agarwal, N., Bullins, B., Hazan, E., Kakade, S., and Singh, K. (2019).

Online control with adversarial disturbances.
In Proceedings of the 36th International Conference on Machine Learning, pages 111–119.

Anava, O., Hazan, E., and Mannor, S. (2015).

Online learning for adversaries with memory: Price of past mistakes.
In Advances in Neural Information Processing Systems 28, volume 28, pages 784–792.

Argue, C., Gupta, A., Guruganesh, G., and Tang, Z. (2020).

Chasing convex bodies with linear competitive ratio.
In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1519–1524.

Chen, N., Goel, G., and Wierman, A. (2018).

Smoothed online convex optimization in high dimensions via online balanced descent.
In Proceedings of the 31st Conference on Learning Theory, pages 1574–1594.

Daniely, A., Gonen, A., and Shalev-Shwartz, S. (2015).

Strongly adaptive online learning.
In Proceedings of the 32nd International Conference on Machine Learning, pages 1405–1411.

Daniely, A. and Mansour, Y. (2019).

Competitive ratio vs regret minimization: achieving the best of both worlds.
In Proceedings of the 30th International Conference on Algorithmic Learning Theory, pages 333–368.

Zhang Smoothed OCO

Thanks!

Learning And Mining from DatA

A DAML



Online Learning Smoothed OCO Conclusion

Reference II

Friedman, J. and Linial, N. (1993).

On convex body chasing.
Discrete & Computational Geometry, 9:293–321.

Goel, G., Lin, Y., Sun, H., and Wierman, A. (2019).

Beyond online balanced descent: An optimal algorithm for smoothed online optimization.
In Advances in Neural Information Processing Systems 32, pages 1875–1885.

Hazan, E., Agarwal, A., and Kale, S. (2007).

Logarithmic regret algorithms for online convex optimization.
Machine Learning, 69(2-3):169–192.

Hazan, E. and Seshadhri, C. (2007).

Adaptive algorithms for online decision problems.
Electronic Colloquium on Computational Complexity, 88.

Jun, K.-S., Orabona, F., Wright, S., and Willett, R. (2017).

Improved strongly adaptive online learning using coin betting.
In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, pages 943–951.

Kapralov, M. and Panigrahy, R. (2010).

Prediction strategies without loss.
ArXiv e-prints, arXiv:1008.3672.

Lin, Y., Goel, G., and Wierman, A. (2020).

Online optimization with predictions and non-convex losses.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 4(1):18:1–18:32.

Zhang Smoothed OCO

Learning And Mining from DatA

A DAML



Online Learning Smoothed OCO Conclusion

Reference III

Sellke, M. (2020).

Chasing convex bodies optimally.
In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1509–1518.

Shalev-Shwartz, S. (2011).

Online learning and online convex optimization.
Foundations and Trends in Machine Learning, 4(2):107–194.

Wang, G., Wan, Y., Yang, T., and Zhang, L. (2021).

Online convex optimization with continuous switching constraint.
In Advances in Neural Information Processing Systems 34, pages 28636–28647.

Zhang, L., Jiang, W., Lu, S., and Yang, T. (2021a).

Revisiting smoothed online learning.
In Advances in Neural Information Processing Systems 34, pages 13599–13612.

Zhang, L., Jiang, W., Yi, J., and Yang, T. (2022).

Smoothed online convex optimization based on discounted-normal-predictor.
ArXiv e-prints, arXiv:2205.00741.

Zhang, L., Lu, S., and Zhou, Z.-H. (2018a).

Adaptive online learning in dynamic environments.
In Advances in Neural Information Processing Systems 31, pages 1323–1333.

Zhang, L., Wang, G., Tu, W.-W., Jiang, W., and Zhou, Z.-H. (2021b).

Dual adaptivity: A universal algorithm for minimizing the adaptive regret of convex functions.
In Advances in Neural Information Processing Systems 34, pages 24968–24980.

Zhang Smoothed OCO

Learning And Mining from DatA

A DAML



Online Learning Smoothed OCO Conclusion

Reference IV

Zhang, L., Yang, T., Jin, R., and Zhou, Z.-H. (2018b).

Dynamic regret of strongly adaptive methods.
In Proceedings of the 35th International Conference on Machine Learning, pages 5882–5891.

Zinkevich, M. (2003).

Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the 20th International Conference on Machine Learning, pages 928–936.

Zhang Smoothed OCO

Learning And Mining from DatA

A DAML


	Online Learning
	Regret
	Dynamic Regret
	Adaptive Regret

	Smoothed Online Convex Optimization
	Dynamic Regret with Switching Cost
	Adaptive Regret with Switching Cost
	Competitive Ratio

	Conclusion

