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Mathematical Formulation

Testing—Risk Minimization

min
h∈H

ℓ(h(x), y)

ℓ(·, ·) : R× R 7→ R is
certain loss

E.g., 0−1 loss, hinge loss,
squared loss
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Mathematical Formulation

Testing—Risk Minimization

min
h∈H

R(h) = E(x,y)∼D
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ℓ(h(x), y)
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ℓ(·, ·) : R× R 7→ R is
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E.g., 0−1 loss, hinge loss,
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Mathematical Formulation

Training—Empirical Risk
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sampled independently
from D
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certain loss
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Examples—Least Squares

min
w∈W

1
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i=1

(x⊤
i w − yi)
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Fundamentals of Supervised Learning
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Optimization Theory

Optimization Error

R̂(ĥ)− min
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Learning Theory

Excess Risk

R(ĥ)− min
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Excess Risk of ERM

R(ĥ)− R(h∗)

[Bartlett and Mendelson, 2002]

Lipschitz
O
(

1√
n

)
[Srebro et al., 2010]

Smooth

Strongly Convex
[Sridharan et al., 2009]

O
(

1
n

)[Zhang et al., 2017]
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Rationale of ERM

Bounded or Sub-Gaussian Distributions

Empirical risk is a good approximation of risk when the
distribution is bounded or sub-Gaussian
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Rationale of ERM

Bounded or Sub-Gaussian Distributions

Empirical risk is a good approximation of risk when the
distribution is bounded or sub-Gaussian, i.e., for any h ∈ H,∣∣∣∣∣∣∣∣

1
n

n∑

i=1

ℓ(h(xi), yi))

︸ ︷︷ ︸
R̂(h)

−E(x,y)∼D

[
ℓ(h(x), y)

]
︸ ︷︷ ︸

R(h)

∣∣∣∣∣∣∣∣
= O

(
1

nα

)

Losses: ℓ(h(x1), y1)), . . . , ℓ(h(xn), yn))

Predictions: h(x1), . . . , h(xn)
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Sub-Gaussian Distributions

P(|X | ≥ t) ≤ Ce−νt2
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Heavy-tailed Distributions

Heavy-tailed Distributions [Foss et al., 2013]∫ ∞

−∞
etxdF (x) = ∞, ∀t > 0

where F (x) is the distribution function
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Heavy-tailed Distributions

Heavy-tailed Distributions [Foss et al., 2013]∫ ∞

−∞
etxdF (x) = ∞, ∀t > 0

where F (x) is the distribution function
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Heavy-tailed Distributions

Heavy-tailed Distributions [Foss et al., 2013]∫ ∞

−∞
etxdF (x) = ∞, ∀t > 0

where F (x) is the distribution function

Occur in Physics, Geoscience and Economics

Learning under Heavy-tailed Distributions

ERM fails!
∣∣∣∣∣∣∣∣

1
n

n∑

i=1

ℓ(h(xi), yi))

︸ ︷︷ ︸
R̂(h)

−E(x,y)∼D

[
ℓ(h(x), y)

]
︸ ︷︷ ︸

R(h)

∣∣∣∣∣∣∣∣
=?

Truncated Minimization [Zhang and Zhou, 2018]
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Bounded Distributions

Estimation of the mean

Hoeffding’s inequality [Lugosi, 2009]

Let X1, . . . ,Xn be independent random variables such that
|Xi | ≤ C. Then, with probability at least 1 − δ,∣∣∣∣∣

1
n

n∑

i=1

Xi − E[X ]

∣∣∣∣∣ ≤ C

√
2
n
log

2
δ
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√
2
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2
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Empirical Risk Minimization (ERM)∣∣∣∣∣∣∣∣
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Heavy-tailed Distributions

Robust estimation of the mean [Catoni, 2012]
n∑

i=1

(Xi − θ̂) = 0

http://cs.nju.edu.cn/zlj Learning under Heavy-tailed Distributions

Learning And Mining from DatA

A DAML

http://cs.nju.edu.cn/zlj


Introduction Related Work Our Approach Conclusion

Heavy-tailed Distributions

Robust estimation of the mean [Catoni, 2012]
n∑

i=1

ψ
[
α(Xi − θ̂)

]
= 0

α > 0, and ψ(·) : R 7→ R is non-decreasing

− log

(
1 − x +

x2

2

)
≤ ψ(x) ≤ log

(
1 + x +

x2

2

)
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Heavy-tailed Distributions

Robust estimation of the mean [Catoni, 2012]
n∑

i=1

ψ
[
α(Xi − θ̂)

]
= 0

α > 0, and ψ(·) : R 7→ R is non-decreasing

− log

(
1 − x +

x2

2

)
≤ ψ(x) ≤ log

(
1 + x +

x2

2

)

θ̂ is a good approximation of the mean
∣∣∣θ̂ − E[X ]

∣∣∣ = O

(√
v
n

)

where v = Var(X )
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Robust ℓ2-regression [Audibert and Catoni, 2011]

Training Data
(x1, y1), . . . , (xn, yn) where xi ∈ R

d and yi ∈ R

Both x and y could be heavy-tailed
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Robust ℓ2-regression [Audibert and Catoni, 2011]

Training Data
(x1, y1), . . . , (xn, yn) where xi ∈ R

d and yi ∈ R

Both x and y could be heavy-tailed

Min-max Estimator

min
w∈W

max
u∈W

λ
(
‖|w‖2 − ‖u‖2)+ 1

αn

n∑

i=1

ψ
[
α(yi −w⊤xi)

2 −α(yi −u⊤xi)
2
]

ψ(x) =





− log

(
1 − x +

x2

2

)
, 0 ≤ x ≤ 1;

log(2), x ≥ 1;

−ψ(−x), x ≤ 0.
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Robust ℓ2-regression [Audibert and Catoni, 2011]

Training Data
(x1, y1), . . . , (xn, yn) where xi ∈ R

d and yi ∈ R

Both x and y could be heavy-tailed

Min-max Estimator

min
w∈W

max
u∈W

λ
(
‖|w‖2 − ‖u‖2)+ 1

αn

n∑

i=1

ψ
[
α(yi −w⊤xi)

2 −α(yi −u⊤xi)
2
]

Excess Risk

E
[
(y − ŵ⊤x)2

]
+ λ‖ŵ‖2 − min

w∈W

{
E
[
(y − w⊤x)2

]
+ λ‖w‖2

}

=O
(

d
n

)

Optimization is unclear
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Learning with Heavy-tailed Losses [Brownlees et al., 2015]

Input

n random variables X1, . . . ,Xn

A functional space F = {f : X 7→ R}
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Learning with Heavy-tailed Losses [Brownlees et al., 2015]

Input

n random variables X1, . . . ,Xn

A functional space F = {f : X 7→ R}

Optimization Problem

n∑

i=1

ψ
[
α(Xi − θ̂)

]
= 0 ⇒

min
f∈F

θ̂f

s. t.
1

nα

n∑

i=1

ψ
[
α(f (Xi)− θ̂f )

]
= 0
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Learning with Heavy-tailed Losses [Brownlees et al., 2015]

Input

n random variables X1, . . . ,Xn

A functional space F = {f : X 7→ R}

Optimization Problem

n∑

i=1

ψ
[
α(Xi − θ̂)

]
= 0 ⇒

min
f∈F

θ̂f

s. t.
1

nα

n∑

i=1

ψ
[
α(f (Xi)− θ̂f )

]
= 0

The theoretical guarantee is unsatisfying

Their risk bounds also hold for ERM

In most cases, they require the bounded assumption

Optimization is unclear
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The Big Picture

Supervised Learning under Heavy-tailed Distributions

Regression
(x and y are

heavy-tailed)

ℓ2-regression ℓ1-regression
· · ·(x⊤w − y)2 |x⊤w − y |

Classification
(x is heavy-tailed)

SVM Logistic Regression
· · ·max(0, 1 − yw⊤x) log

(
1 + e−yw⊤x

)
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(x and y are
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ℓ2-regression ℓ1-regression
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Classification
(x is heavy-tailed)

SVM Logistic Regression
· · ·max(0, 1 − yw⊤x) log

(
1 + e−yw⊤x

)

? ?

http://cs.nju.edu.cn/zlj Learning under Heavy-tailed Distributions

Learning And Mining from DatA

A DAML

http://cs.nju.edu.cn/zlj


Introduction Related Work Our Approach Conclusion

The Big Picture

Supervised Learning under Heavy-tailed Distributions

Regression
(x and y are

heavy-tailed)

ℓ2-regression ℓ1-regression
· · ·(x⊤w − y)2 |x⊤w − y |

[Audibert and Catoni, 2011] [Zhang and Zhou, 2018]

Classification
(x is heavy-tailed)

SVM Logistic Regression
· · ·max(0, 1 − yw⊤x) log

(
1 + e−yw⊤x

)

[Zhang and Zhou, 2018] [Zhang and Zhou, 2018]
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The Big Picture

Supervised Learning under Heavy-tailed Distributions

Regression
(x and y are

heavy-tailed)

ℓ2-regression ℓ1-regression
· · ·(x⊤w − y)2 |x⊤w − y |

[Audibert and Catoni, 2011] [Zhang and Zhou, 2018]

Classification
(x is heavy-tailed)

SVM Logistic Regression
· · ·max(0, 1 − yw⊤x) log

(
1 + e−yw⊤x

)

[Zhang and Zhou, 2018] [Zhang and Zhou, 2018]

Lipschitz Losses

|ℓ(x⊤w, y)− ℓ(x⊤w′, y)| ≤ |x⊤w − x⊤w′|

http://cs.nju.edu.cn/zlj Learning under Heavy-tailed Distributions

Learning And Mining from DatA

A DAML

http://cs.nju.edu.cn/zlj


Introduction Related Work Our Approach Conclusion

ℓ1-regression under Heavy-tailed Distributions

Training Data

(x1, y1), . . . , (xn, yn) where xi ∈ R
d and yi ∈ R

Both x and y could be heavy-tailed
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ℓ1-regression under Heavy-tailed Distributions

Training Data

(x1, y1), . . . , (xn, yn) where xi ∈ R
d and yi ∈ R

Both x and y could be heavy-tailed

Traditional ERM

min
w∈W

1
n

n∑

i=1

|yi − x⊤
i w|
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ℓ1-regression under Heavy-tailed Distributions

Training Data

(x1, y1), . . . , (xn, yn) where xi ∈ R
d and yi ∈ R

Both x and y could be heavy-tailed

Traditional ERM

min
w∈W

1
n

n∑

i=1

|yi − x⊤
i w|

Truncated Minimization

min
w∈W

1
nα

n∑

i=1

ψ
(
α|yi − x⊤

i w|
)

α > 0, and ψ(·) : R 7→ R is non-decreasing

− log

(
1 − x +

x2

2

)
≤ ψ(x) ≤ log

(
1 + x +

x2

2

)
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Theoretical Guarantees
Truncated Minimization for ℓ1-regression

min
w∈W

1
nα

n∑

i=1

ψ
(
α|yi − x⊤

i w|
)

Excess Risk

E
[
|y − ŵ⊤x|

]
− min

w∈W
E
[
|y − w⊤x|

]
= O

(√
d
n

)
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Theoretical Guarantees
Truncated Minimization for ℓ1-regression

min
w∈W

1
nα

n∑

i=1

ψ
(
α|yi − x⊤

i w|
)

Excess Risk

E
[
|y − ŵ⊤x|

]
− min

w∈W
E
[
|y − w⊤x|

]
= O

(√
d
n

)

Min-max Estimator for ℓ2-regression
[Audibert and Catoni, 2011]

min
w∈W

max
u∈W

λ
(
‖|w‖2 − ‖u‖2)+ 1

αn

n∑

i=1

ψ
[
α(yi − w⊤xi)

2 − α(yi − u⊤xi)
2]

Excess Risk

E
[
(y − ŵ⊤x)2]+ λ‖ŵ‖2 − min

w∈W

{
E
[
(y − w⊤x)2]+ λ‖w‖2} = O

(
d
n

)
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ℓ1-regression with Bounded Features

Training Data

(x1, y1), . . . , (xn, yn) where xi ∈ R
d and yi ∈ R

x is bounded and y could be heavy-tailed
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ℓ1-regression with Bounded Features

Training Data

(x1, y1), . . . , (xn, yn) where xi ∈ R
d and yi ∈ R

x is bounded and y could be heavy-tailed

Traditional ERM

min
w∈W

1
n

n∑

i=1

|yi − x⊤
i w|

Excess Risk

E
[
|y − ŵ⊤x|

]
− min

w∈W
E
[
|y − w⊤x|

]
= O

(
D√
n

)

where ‖x‖2 ≤ D
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Experimental Setting

Truncated Minimization Problem

min
w∈W

R̂ψ(w) =
1

nα

n∑

i=1

ψ
(
α|yi − x⊤

i w|
)

Sum of quasiconvex functions

Normalized Gradient Descent (NGD)

wt+1 = wt − η
∂R̂ψ(wt)

‖∂R̂ψ(wt)‖2

Data Sets

Both feature and label are heavy-tailed

Feature is bounded, and label is heavy-tailed

Both feature and label are bounded
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Heavy-tailed Feature and Label

t-distribution and W = sign(V )/|V |1/2.01, V ∼ N (0, 1)

1000 2000 3000 4000 5000
# of Training Samples

1.71

1.72

1.73

1.74

R
is

k

ERM
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Bounded Feature and Heavy-tailed Label

W = sign(V )/|V |1/2.01, V ∼ N (0, 1)

200 400 600 800 1000
# of Training Samples

1.7

1.75

1.8

R
is

k

ERM
Truncation
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Bounded Feature and Label

CASP dataset from UCI

0.5 1 1.5 2
# of Training Samples 104

4.215

4.22

4.225

4.23

4.235

R
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k

ERM
Truncation
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Outline

1 Introduction

2 Related Work

3 Our Approach

4 Conclusion
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Conclusion and Future Work

Conclusion

Truncated Minimization for Heavy-tailed Distributions

min
w∈W

1
nα

n∑

i=1

ψ
(
α|yi − x⊤

i w|
)

Learning Theory (Excess Risk)

E
[
|y − ŵ⊤x|

]
− min

w∈W
E
[
|y − w⊤x|

]
= O

(√
d
n

)

Future Work

Optimization Theory for the Non-convex Problem

Median-of-means Approaches [Hsu and Sabato, 2014]
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