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Supervised Learning by Optimization

Supervised Learning

Input

A set of training data {(xi ∈ R
d , yi ∈ R)}n

i=1

A set of hypotheses w ∈ W ⊆ R
d

Output

A hypothesis w∗ ∈ W that minimizes testing error

x 7→ x⊤w∗

Empirical Risk Minimization

min
w∈W

f (w) =
1
n

n∑

i=1

ℓ(yi , x⊤
i w) + Ω(w)

ℓ(·, ·) is a loss, e.g., hinge loss ℓ(u, v) = max(0, 1 − uv)

Ω(·) is a regularizer, e.g., λ‖w‖2
2 or λ‖w‖1
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The Challenges

Large-scale Convex Optimization

min
w∈W

f (w) =
1
n

n∑

i=1

ℓ(yi , x⊤
i w) + Ω(w)

Gradient Descent (GD)

1: for t = 1, 2, . . . ,T do
2: w′

t+1 = wt − ηt
(1

n

∑n
i=1 ∇ℓ(yi , xi

⊤wt) +∇Ω(wt)
)

3: wt+1 = ΠW(w′
t+1)

4: end for

Computational Cost

Time Complexity: O(nd) + O(poly(d))

Space Complexity: O(nd)
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Randomized Algorithms

Random Sampling based Algorithms

aim to address the large-scale challenge, i.e., large n

select a subset of training data randomly

referred to as Stochastic Optimization

Random Projection based Algorithms

aim to address the high-dimensional challenge, i.e., large d

reduce the dimensionality by random projection

referred to as Stochastic Approximation
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Stochastic Gradient Descent (SGD)

The Algorithm

1: for t = 1, 2, . . . ,T do
2: Select a training instance (xi , yi) randomly
3: w′

t+1 = wt − ηt
(
∇ℓ(yi , xi

⊤wt)
)

4: wt+1 = ΠW(w′
t+1)

5: end for

Advantages

Time Complexity: O(d) + O(poly(d))

Space Complexity: O(d)

Limitations

The iteration complexity is much higher than GD
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The Problem

Iteration Complexity

The number of iterations T to ensure

f (wT )− min
w∈Ω

f (w) ≤ ǫ

Comparisons between GD and SGD

Convex & Smooth Strongly Convex & Smooth

GD O
(

1√
ǫ

)
O
(
log 1

ǫ

)

SGD O
( 1
ǫ2

)
O
(1
ǫ

)

Note
1
ǫ2 >

1
ǫ
>

1√
ǫ
≫ log

1
ǫ

1012 > 106 > 103 ≫ 6, ǫ = 10−6
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Motivations

Reason of Slow Convergence Rate

The step size of SGD is a decreasing sequence

ηt =
1√
t

for convex function

ηt =
1
t for strongly convex function

Reason of Decreasing Step Size

w′
t+1 = wt − ηt

(
∇ℓ(yi , x⊤

i wt)
)

Stochastic Gradients introduce a constant error

The key idea

Control the variance of stochastic gradients

Choose a fixed step size ηt
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Mixed Gradient Descent I

Mixed Gradient of wt

m(wt) = ∇ℓ(yt , x⊤
t wt)−∇ℓ(yt , x⊤

t w0) +∇f (w0)

where (xt , yt) is a random sample, w0 is a initial solution, and

∇f (w0) =
1
n

n∑

i=1

∇ℓ(yi , x⊤
i w0)

The Properties of Mixed Gradient

It is still a unbiased estimate of true gradient

E[m(wt)] =
1
n

n∑

i=1

∇ℓ(yi , x⊤
i wt) = ∇f (wt)

The variance is controlled by the distance

‖∇ℓ(yt , x⊤
t wt)−∇ℓ(yt , x⊤

t w0)‖2 ≤ L‖wt − w0‖2
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Mixed Gradient Descent II

The Algorithm (NIPS 2013)

1: Compute the true gradient of w0

∇f (w0) =
1
n

n∑

i=1

∇ℓ(yi , x⊤
i w0)

2: for t = 1, 2, . . . ,T do
3: Select a training instance (xi , yi) randomly
4: Compute the mixed gradient of wt

m(wt) = ∇ℓ(yt , x⊤
t wt)−∇ℓ(yt , x⊤

t w0) +∇f (w0)

5: w′
t+1 = wt − ηtm(wt)

6: wt+1 = ΠW(w′
t+1)

7: end for
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Theoretical Guarantees

Theorem 1 ([Zhang et al., 2013a])

Suppose the objective function is smooth and strongly convex.
To find an ǫ-optimal solution, the mixed gradient descent needs

True Gradient Stochastic Gradient
MGD O

(
log 1

ǫ

)
O
(
κ2 log 1

ǫ

)

In contrast, SGD needs O(1/ǫ) stochastic gradients.

Extensions

For unbounded domain, O(κ2 log 1/ǫ)) can be improved to
O(κ log 1/ǫ) [Johnson and Zhang, 2013]

For smooth and convex function, O(log 1/ǫ) true gradients
and O(1/ǫ) stochastic gradients are needed
[Mahdavi et al., 2013]
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Experimental Results I

Reuters Corpus Volume I (RCV1) data set

The optimization error
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Experimental Results II

Reuters Corpus Volume I (RCV1) data set

The variance of mixed gradient
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The Power of Random Projection

Random Projection

A dimensionality reduction method:

x ∈ R
d → A⊤x ∈ R

m

where A ∈ R
d×m and Aij ∼ N (0, 1/m)

Theorem 1 (Johnson and Lindenstrauss Lemma
[Achlioptas, 2003])

Given ǫ > 0 and an integer n, let m be a positive integer such
that m = Ω(ǫ−2 log n). For every set P of n points in R

d there
exists f : Rd → R

m such that for all xi , xj ∈ P

(1 − ǫ)‖xi − xj‖2 ≤ ‖f (xi)− f (xj)‖2 ≤ (1 + ǫ)‖xi − xj‖2.

Zhang Randomized Methods

Learning And Mining from DatA

A DAML



Introduction Stochastic Optimization Stochastic Approximation Conclusions and Future WorkBackground Dual Random Projection

Optimization after Random Projection I

The Primal Problem in R
d

min
w∈Rd

1
n

n∑

i=1

ℓ(yi , x⊤
i w) +

λ

2
‖w‖2

Traditional Approach

1 Reduce the dimensionality x̂i = A⊤xi ∈ R
m

2 Solve the primal problem in R
m

min
z∈Rm

1
n

n∑

i=1

ℓ(yi , z⊤x̂i) +
λ

2
‖z‖2

3 Compute ŵ ∈ R
d by ŵ = Az∗

Zhang Randomized Methods
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Optimization after Random Projection II

Advantages

Time complexity is reduced from O(nd) to O(nm)

Space complexity is reduced from O(nd) to O(nm)

It is possible to run gradient descent which converges fast

The Limitation

ŵ is not a good approximation of

w∗ = argmin
w∈Rd

1
n

n∑

i=1

ℓ(yi , x⊤
i w) +

λ

2
‖w‖2

Zhang Randomized Methods
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Optimization after Random Projection III

Proposition 1 (Distance of a Random Subspace to a Fixed
Point [Vershynin, 2009])

Let E ∈ Gd ,m be a random subspace (codim E = d − m). Let x
be an united length vector, which is arbitrary but fixed. Then

Pr

(
dist(x,E) ≤ ǫ

√
d − m

d

)
≤ (cǫ)d−m for any ǫ > 0,

where c is an universal constant.

With a probability at least 1 − 2−d+m, we have

‖ŵ − w∗‖2 ≥ 1
2c

√
d − m

d
‖w∗‖2
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Motivations I

The Primal Problem in R
d

min
w∈Rd

1
n

n∑

i=1

ℓ(yi , x⊤
i w) +

λ

2
‖w‖2, (P1)

The Dual Problem

max
α∈Ωn

−
n∑

i=1

ℓ∗(αi)−
1

2nλ
(α ◦ y)⊤X⊤X (α ◦ y), (D1)

Proposition 2

Let w∗ ∈ R
d and α∗ ∈ R

n be solutions to (P1) and (D1).

w∗ =− 1
λn

X (α∗ ◦ y),

[α∗]i =ℓ′
(

yi , x⊤
i w∗

)
, i = 1, . . . , n.
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Motivations II

The Primal Problem in R
m

min
z∈Rm

1
n

n∑

i=1

ℓ(yi , z⊤x̂i) +
λ

2
‖z‖2, (P2)

The Dual Problem

max
α∈Ωn

−
n∑

i=1

ℓ∗(αi)−
1

2λn
(α ◦ y)⊤X⊤AA⊤X (α ◦ y), (D2)

Proposition 3

Let z∗ ∈ R
m and α̂∗ ∈ R

n be solutions to (P2) and (D2).

z∗ =− 1
λn

A⊤X (α̂∗ ◦ y),

[α̂∗]i =ℓ′
(

yi , x̂⊤
i z∗

)
, i = 1, . . . , n.
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Motivations III

The Big Picture

Primal-Primal Primal-Dual Dual-Dual
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Motivations IV

Optimization after Random Projection

Primal Solution → Primal Solution
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Dual Random Projection

Use Dual Solutions to Bridge Primal Solutions

Primal Solution → Dual Solution → Primal Solution
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Dual Random Projection

The Algorithm (COLT 2013 & IEEE Trans. Inf. Theory 2014)

1 Reduce the dimensionality x̂i = A⊤xi ∈ R
m

2 Solve the low-dimensional problem

min
z∈Rm

1
n

n∑

i=1

ℓ(yi , z⊤x̂i) +
λ

2
‖z‖2

3 Construct the dual solution α̂∗ ∈ R
n by

[α̂∗]i = ℓ′
(

yi , x̂⊤
i z∗

)
, i = 1, . . . , n

4 Compute w̃ ∈ R
d by

w̃ = − 1
λn

X (α̂∗ ◦ y)

Zhang Randomized Methods
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Theoretical Guarantees

Low-rank Assumption

r = rank(X ) ≪ min(d , n).

Theorem 2 ([Zhang et al., 2013b] [Zhang et al., 2014])

For any 0 < ǫ ≤ 1/2, with a probability at least 1 − δ, we have

‖w̃ − w∗‖2 ≤ ǫ

1 − ǫ
‖w∗‖2,

provided

m ≥ (r + 1) log(2r/δ)
cǫ2 ,

where constant c is at least 1/4.

Implication

To accurately recover w∗, the number of required random
projections is Ω(r log r).
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For any 0 < ǫ ≤ 1/2, with a probability at least 1 − δ, we have

‖w̃ − w∗‖2 ≤ ǫ

1 − ǫ
‖w∗‖2,

provided

m ≥ (r + 1) log(2r/δ)
cǫ2 ,

where constant c is at least 1/4.

Implication

To accurately recover w∗, the number of required random
projections is Ω(r log r).
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Experimental Results I

A 20, 000 × 50, 000 data matrix with rank 10.

The reconstruction error
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Experimental Results II

A 20, 000 × 50, 000 data matrix with rank 10.

The running time
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Outline
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Conclusions and Future Work

Summary

Based on random sampling, we propose a Mixed Gradient
Descent (MGD) algorithm which improves the convergence
rate significantly.

Based on random projection, we propose a Dual Random
Projection (DRP) algorithm which can recover the optimal
solution accurately.

Future Work

Extend MGD to distributed environments

Relax assumptions in Dual Random
Projection [Yang et al., 2015]

Extend DRP to more problems, such as sparse learning

Zhang Randomized Methods

Learning And Mining from DatA

A DAML



Introduction Stochastic Optimization Stochastic Approximation Conclusions and Future Work

Conclusions and Future Work

Summary

Based on random sampling, we propose a Mixed Gradient
Descent (MGD) algorithm which improves the convergence
rate significantly.

Based on random projection, we propose a Dual Random
Projection (DRP) algorithm which can recover the optimal
solution accurately.

Future Work

Extend MGD to distributed environments

Relax assumptions in Dual Random
Projection [Yang et al., 2015]

Extend DRP to more problems, such as sparse learning
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