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Introduction

Supervised Learning by Optimization

Supervised Learning

Input
@ A set of training data {(x; € R%,y; € R)}" ;
@ A set of hypotheses w € W C R¢
Output
@ A hypothesis w, € W that minimizes testing error
X — X W,

Empirical Risk Minimization

min, f(w) = % ;E(Yi,XiTW) + Q(w)

@ /(-,-)is aloss, e.g., hinge loss ¢(u,v) = max(0,1 — uv)

@ Q(-) is aregularizer, e.g., Aw||3 or Al|w||y LAM

Zhang Randomized Methods




Introduction
The Challenges

Large-scale Convex Optimization

min f(w) = % ig;ﬁ(yi,xrw) + Q(w)
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Introduction
The Challenges

Large-scale Convex Optimization

min f(w) Zﬁ Yi, X W) 4+ Q(w)

Gradient Descent (GD)

1. fort=1,2,...,T do

20 Wiq =W —nt (% Yo VA(Yi, xi Twe) + VQ(wy))
3 Wi = Mw(wyy)

4: end for
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Large-scale Convex Optimization

min f(w) Zﬁ Yi, X W) 4+ Q(w)

Gradient Descent (GD)
1. fort=1,2,...,T do
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4: end for

Computational Cost
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Introduction
Randomized Algorithms

Random Sampling based Algorithms

@ aim to address the large-scale challenge, i.e., large n
@ select a subset of training data randomly
@ referred to as Stochastic Optimization

Random Projection based Algorithms

@ aim to address the high-dimensional challenge, i.e., large d
@ reduce the dimensionality by random projection
@ referred to as Stochastic Approximation
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Stochastic Optimization Background Mixed Gradient Descent

Stochastic Gradient Descent (SGD)

The Algorithm
1. fort=1,2,....T do
2:  Select a training instance (x;,y;) randomly
3wy =W — e (VE(Yi, X Twe))
4 Wiy = HW(W{H)
5. end for
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Stochastic Gradient Descent (SGD)

1. fort=1,2,....T do

2:  Select a training instance (x;,y;) randomly
3wy =W — e (VE(Yi, X Twy))

4 Wepp = Myy(wy, )

5. end for

Advantages

@ Time Complexity: O(d) + O(poly(d))
@ Space Complexity: O(d)
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Stochastic Optimization Background Mixed Gradient Descent

Stochastic Gradient Descent (SGD)

1. fort=1,2,....T do

2:  Select a training instance (x;,y;) randomly
3wy =W — e (VE(Yi, X Twy))

4 Wepp = Myy(wy, )

5. end for

Advantages

@ Time Complexity: O(d) + O(poly(d))
@ Space Complexity: O(d)

@ The iteration complexity is much higher than GD
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Stochastic Optimization Background Mixed Gradient Descent

The Problem

Iteration Complexity

The number of iterations T to ensure
f(wt) —minf(w) <
(wr) — minf(w) < e

4

Comparisons between GD and SGD

Convex & Smooth  Strongly Convex & Smooth

GD o() O (log 1)
SGD O (z) O (¢)
Note
1 1 1 1
2 > - > N > log -
102 > 108 > 10% > 6, e — 10~ LAVDA
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Motivations

Reason of Slow Convergence Rate
The step size of SGD is a decreasing sequence

@ = % for convex function

o = % for strongly convex function
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Motivations

Reason of Slow Convergence Rate

The step size of SGD is a decreasing sequence

°77t—%

o = % for strongly convex function

for convex function

Reason of Decreasing Step Size

Wiig = We — 1t (VK(Yi,XiTWtD

Stochastic Gradients introduce a constant error
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Motivations

Reason of Slow Convergence Rate

The step size of SGD is a decreasing sequence

@ = % for convex function

o = % for strongly convex function

Reason of Decreasing Step Size

Wiig = We — 1t (VK(Yi,XiTWtD

Stochastic Gradients introduce a constant error

The key idea

@ Control the variance of stochastic gradients
@ Choose a fixed step size n LaNIp
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Stochastic Optimization Background Mixed Gradient Descent

Mixed Gradient Descent |

Mixed Gradient of w;
m(wi) = VE(yr, X{ Wy) — VE(yr, X Wo) + V(W)

where (X, Yyt) is a random sample, wy is a initial solution, and

1 n
Vf(wo) = = > Ve(yi, xi wo)
i—1

Zhang Randomized Methods



Stochastic Optimization Background Mixed Gradient Descent

Mixed Gradient Descent |

Mixed Gradient of w;
m(wi) = VE(yr, X{ Wy) — VE(yr, X Wo) + V(W)

where (X, Yyt) is a random sample, wy is a initial solution, and

1 n
Vf(wo) = = > Ve(yi, xi wo)
i—1

The Properties of Mixed Gradient
@ Itis still a unbiased estimate of true gradient

E[m(wy)] = ii Vi, X wy) = V(W)
i—1

@ The variance is controlled by the distance
I(ye,x we) — Ve(ye, X7 wo)llz < Lwy —woll,  =ADA
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Stochastic Optimization Background Mixed Gradient Descent

Mixed Gradient Descent Il

The Algorithm (NIPS 2013)

1. Compute the true gradient of Wo

Vi(wp) = ZVE Yi, X Wo)
i=1
2. fort=1,2,...,T do
3:  Select a training instance (Xx;, y;) randomly
4:  Compute the mixed gradient of w;
m(We) = VE(Yr, X W) — VE(Yr, % Wo) + Vf(Wo)

5. Wyq =W —mm(Wy)
6:  Wip1 = HW(W{H)
7. end for

nnnnnnnnnnnnnnnnnnnnnn
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Stochastic Optimization Background Mixed Gradient Descent

Theoretical Guarantees

Theorem 1 ([Zhang et al., 2013a])

Suppose the objective function is smooth and strongly convex.

To find an e-optimal solution, the mixed gradient descent needs
True Gradient Stochastic Gradient

MGD O (log?) O (k%log 1)

In contrast, SGD needs O(1/¢) stochastic gradients.

@ For unbounded domain, O(x?log 1/¢)) can be improved to
O(xlog 1/e¢) [Johnson and Zhang, 2013]

@ For smooth and convex function, O(log 1/¢) true gradients
and O(1/¢) stochastic gradients are needed
[Mahdavi et al., 2013]
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Stochastic Optimization Background Mixed Gradient Descent

Experimental Results |

@ Reuters Corpus Volume | (RCV1) data set
@ The optimization error
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Experimental Results Il

@ Reuters Corpus Volume | (RCV1) data set
@ The variance of mixed gradient
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Stochastic Approximation  Background Dual Random Projection

The Power of Random Projection

Random Projection
A dimensionality reduction method:

x eRY - ATx e R™
where A € RY™ and A;j ~ N(0,1/m)

Theorem 1 (Johnson and Lindenstrauss Lemma

[Achlioptas, 2003])

Given e > 0 and an integer n, let m be a positive integer such
that m = Q(¢2log n). For every set P of n points in RY there
exists f : RY — R™ such that for all x;, x; € P

(1= e)lIxi =12 < [[F(xi) = F )17 < (2 + €)lxi —xj%.
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Optimization after Random Projection |

The Primal Problem in R4

A
min —ZE Yi, X W) EHWHZ

weRd N

Traditional Approach

@ Reduce the dimensionality Xj = ATx; € R™
@ Solve the primal problem in R™M

A
min —Ze i 27%) + 5212

zeRM™ N

© Compute w € RY by w = Az,

nnnnnnnnnnnnnnnnnn th
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Stochastic Approximation  Background Dual Random Projection

Optimization after Random Projection Il

Advantages

@ Time complexity is reduced from O(nd) to O(nm)
@ Space complexity is reduced from O(nd) to O(nm)
@ It is possible to run gradient descent which converges fast

The Limitation

W is not a good approximation of

W, = argmin —Zf (yi, X' w) + %HWHZ

weRd
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Optimization after Random Projection Il

Proposition 1 (Distance of a Random Subspace to a Fixed
Point [Vershynin, 2009])

Let E € Gy m be a random subspace (codim E = d —m). Let x
be an united length vector, which is arbitrary but fixed. Then

Pr <dist(x, E) < e\/d_Tm> < (ce)d~™for any e > 0,

where c is an universal constant.

With a probability at least 1 — 2—9+™ we have

~ 1 /d—m
W =W,z > o=/ —— W2
2c d
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Stochastic Approximation,  Background Dual Random Projection

Motivations |

The Primal Problem in R4

1 T A 2
- Y Z P1
min -2_1 £(Yi, X W) + 2||W|| . (P1)

The Dual Problem

=]
[ERN
\

. N - Ty T
mex =7 4:(ar) g (xoV)TXTX (o), (B1)

| |_‘
A\

Proposition 2
Let w, € RY and o, € R" be solutions to (P1) and (D1).

W*:—/\inX(a* Oy), L
[a]i = (yi,xiTw*) Ji=1,....,n. A
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Motivations Il

The Primal Problem in R™

min nZ€ YiZ'Xi) + IIZH, (P2)

The Dual Problem
n

Net ! —(aoy)'XTAATX(ac0y), (D2)
acn = 2)\

Proposition 3
Let z, € R™ and a,. € R" be solutions to (P2) and (D2).

1 .
Z, = — EATX(a* oy),

@i = (vi.Xz), i=1,..n

Zhang Randomized Methods
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Motivations Il

The Big Picture
Primal-Primal Primal-Dual Dual-Dual

Random Projection

[ High-dimensional J Low-dimensional

Primal Problem Primal Problem

@ Inverse Projection

Q

[ Dual Problem } Dual Problem LANbA
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Motivations 1V

Optimization after Random Projection
Primal Solution — Primal Solution

Random Projection

{ High- dimensional] — Low-dimensional

Primal Problem Primal Problem

ﬁ Inverse Projection

Q

[ Dual Problem } Dual Problem LANbA
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Dual Random Projection

Use Dual Solutions to Bridge Primal Solutions
Primal Solution — Dual Solution — Primal Solution

Random Projection

[ High-dimensional J — Low-dimensional

Primal Problem Primal Problem

ﬁ Inverse Projection

Q

[ Dual Problem } Dual Problem LANbA
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Stochastic Approximation,  Background Dual Random Projection

Dual Random Projection

The Algorithm (COLT 2013 & IEEE Trans. Inf. Theory 2014)

@ Reduce the dimensionality Xj = ATx; € R™
Q Solve the Iow-dimensional problem

A 2
min — =
min — E oy, z'X) +52]

@ Construct the dual solutlon a, € R" by
[a.]i =7 (yi,?rz*>, i=1,...,n

© Compute w € RY by
W= —AinX(a* oY)

nnnnnnnnnnnnnnnnnnnnnn
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Stochastic Approximation,  Background Dual Random Projection

Theoretical Guarantees

Low-rank Assumption
r = rank(X) < min(d, n).

Theorem 2 ([Zhang et al., 2013b] [Zhang et al., 2014])

For any 0 < e < 1/2, with a probability at least 1 — §, we have

. €
W —w.|[z < EHW*”L

provided
(r +1)log(2r/9)

m >
ce?

)

where constant c is at least 1/4.
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Stochastic Approximation,  Background Dual Random Projection

Theoretical Guarantees

Low-rank Assumption
r = rank(X) < min(d, n).

Theorem 2 ([Zhang et al., 2013b] [Zhang et al., 2014])
For any 0 < e < 1/2, with a probability at least 1 — §, we have

. €
W —w.|[z < EHW*”L

provided
(r +1)log(2r/9)

m >
ce?

)

where constant c is at least 1/4.

Implication

To accurately recover w,, the number of required random L
projections is Q(r logr).
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Experimental Results |

@ A 20,000 x 50,000 data matrix with rank 10.
@ The reconstruction error
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Experimental Results Il

@ A 20,000 x 50,000 data matrix with rank 10.
@ The running time
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Conclusions and Future Work

@ Based on random sampling, we propose a Mixed Gradient
Descent (MGD) algorithm which improves the convergence
rate significantly.

@ Based on random projection, we propose a Dual Random
Projection (DRP) algorithm which can recover the optimal
solution accurately.

Future Work

@ Extend MGD to distributed environments

@ Relax assumptions in Dual Random
Projection [Yang et al., 2015]

nnnnnnnnnnnnnnn
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Conclusions and Future Work

@ Based on random sampling, we propose a Mixed Gradient
Descent (MGD) algorithm which improves the convergence
rate significantly.

@ Based on random projection, we propose a Dual Random
Projection (DRP) algorithm which can recover the optimal
solution 3

Thanks!
Future Work

@ Extend MGD to distributed environments

@ Relax assumptions in Dual Random
Projection [Yang et al., 2015]

@ Extend DRP to more problems, such as sparse IearningLANbA

Tearming And Wining from Dat
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